• Title/Summary/Keyword: Sensor Interface System

Search Result 524, Processing Time 0.033 seconds

A Study on the interface of information processing system on Human enhancement fire fighting helmet (휴먼 증강 소방헬멧 정보처리 시스템 인터페이스 연구)

  • Park, Hyun-Ju;Lee, Kam-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.497-498
    • /
    • 2018
  • In the fire scene, it is difficult to see 1m ahead because of power failure, smoke and toxic gas, even with thermal imaging camera and Xenon searchlight. Analysis of the smoke particles in the fire scene shows that even if the smoke is $5{\mu}m$ or less in wavelength, it is difficult to obtain a front view when using a conventional thermal imaging camera if the visual distance exceeds 1 meter. In the case of black smoke with a particle wavelength of $5{\mu}m$ or more, a space permeation sensor technology using various sensors other than a single sensor is required because chemical materials, gas, and water molecules are mixed. Firefighters need a smoke detection technology for smoke detection and spatial information visualization for forward safety view.In this paper, we design the interface of the information processing system with 32bit CPU core and peripheral circuit. We also implemented and simulated the interface with Lidar sensor. Through this, we provide interface that can implement information processing system of human enhancement fire helmet in the future.

  • PDF

Education Equipment for FPGA Design of Sensor-based IOT System (센서 기반의 IOT 시스템의 FPGA 설계 교육용 장비)

  • Cho, Byung-woo;Kim, Nam-young;Yu, Yun-seop
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2016
  • Education equipment for field programmable gate array (FPGA) design of sensor-based IOT (Internet Of Thing) system is introduced. Because sensors have different interfaces, several types of interface controller on FPGA need. Using this equipment, several types of interface controller, which can control ADC (analog-to-digital converter) for analog sensor outputs and $I^2C$ (Inter-Integrated Circuit), SPI (Serial Peripheral Interface Bus), and GPIO (General-Purpose Input/Output) for digital sensor outputs, can be designed on FPGA. Image processing hardware using image sensors and display controller for real and image-processed images or videos can be design on FPGA chip. This equipment can design a SOC (System On Chip) consisting of a hard process core on Linux OS and a FPGA block for IOT system which can communicate with wire and wireless networks. Using the education equipment, an example of hardware design using image sensor and accelerometer is described, and an example of syllabus for "Digital system design using FPGA" course is introduced. Using the education equipment, students can develop the ability to design some hardware, and to train the ability for the creative capstone design through conceptual, partial-level, and detail designs.

Design and Implementation of a Sensor Node for Out-Door Environmental Monitoring (옥외 환경 모니터링을 위한 센서노드 설계 및 구현)

  • Son, Jae-Hyun;Cho, Yang-Haeng;Kim, Je-Hong;Joo, Young-Suk;So, Sun-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.3
    • /
    • pp.117-122
    • /
    • 2007
  • In this paper, we described a design and implementation of a sensor node for environmental monitoring. The main focus of design for sensor nodes is to isolate MCU for treating sensors from the RF module for considering various communication environment. The second is to make the interface between MCU and varity of sensor. In addition, we choose a narrow band communication module, cc1020, for the admittance of Korea government communication law. We also use a uC/OS-II as an operating system which is famous for 8bit MCUs. We showed that the communication performance is sufficient to use the communication module in a out-door environment through several experiments in that it is possible to transmit between 100m distance through experiments in a mountain.

A Study on Photonic sensor Interface in SOPC platform (SOPC기반 광-센서 인터페이스에 관한 연구)

  • Son, Hong-Bum;Park, Seong-Mo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.971-974
    • /
    • 2005
  • In this paper, we describe photonic sensor interface in SOPC(System on a programmable chip) platform. This platform uses device that has ARM922T processor and APEX FPGA area on a chip. We use two development kits. The one is embedded kit that using Intel's Xscale device, the another is SOPC kit that using Altera's Excalibur device. We implement some device logic that DMAC, ADCC, etc. and application.

  • PDF

A Low-Energy Ultra-Wideband Internet-of-Things Radio System for Multi-Standard Smart-Home Energy Management

  • Khajenasiri, Iman;Zhu, Peng;Verhelst, Marian;Gielen, Georges
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.354-365
    • /
    • 2015
  • This work presents an Internet of Things (IoT) system for home energy management based on a custom-designed Impulse Radio Ultra-Wideband (IR-UWB) transceiver that targets a generic and multi-standard control system. This control system enables the interoperability of heterogeneous devices: it integrates various sensor nodes based on ZigBee, EnOcean and UWB in the same middleware by utilizing an ad-hoc layer as an interface between the hardware and software. The paper presents as a first the design of the IR-UWB transceiver for a portable sensor node integrated with the middleware layer, and also describes the receiver connected to the control system. The custom-designed low-power transmitter on the sensor node is fabricated with 130 nm CMOS technology. It generates a signal with a 1.1 ns pulse width while consuming $39{\mu}W$ at 1 Mbps. The UWB sensor node with a temperature measurement capability consumes 5.31 mW, which is lower than the power level of state-of-the-art solutions for smart-home applications. The UWB hardware and software layers necessary to interface with the control system are verified in over-the-air measurements in an actual office environment. With the implementation of the presented sensor node and its integration in the energy management system, we demonstrate achievement of the broad flexibility demanded for IoT.

Design and Implementation of a Microwave Motion Detector with Low Power Consumption

  • Sohn, Surg-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, we propose a design of microwave motion detector using X-band doppler radar sensor to minimize the power consumption. To minimize the power consumption and implement battery operated system, pulse input with 2 KHz, 4% duty cycle is exerted on the doppler radar sensor. In order to simplify the process of working with ATmega2560 microcontroller unit, Arduino compatible board is designed and implemented. Arduino is open source hardware and many library software is published as open source tools. Smartphone app is also proposed and designed as a real-time user interface of the motion detector. The SQLite database on the Android mobile operating system is used for recording raw data of motion detection for post-processing job, such as fast Fourier transform (FFT). Bluetooth interface module is implemented on the motion detection board as a wireless communication interface to the smartphone. The speed of human movement is identified by post-processing FFT.

Development of Head Mounted Display Interface System for Controlling Wireless Capsule Endoscope (무선 캡슐내시경 조종을 위한 머리부착형 디스플레이 인터페이스 시스템의 개발)

  • Young-Eun, Hwang;Young-Don, Son
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.417-423
    • /
    • 2022
  • The present study proposed a new interface system for capsule endoscopy by using head mounted display (HMD) device, which can control the orientation of the capsule endoscope with electromagnetic actuator (EMA) system. The orientation information of the HMD user was detected by the gyroscope sensor built into the device and then calculated to as an angle increment using Unity Engine compiler. The measured angle changes from the HMD were converted to the current values of the corresponding coils to be changed in the EMA system. Two experiments were designed to measure the accuracy and the intuitiveness of the HMD interface system. In the angle accuracy measurement, the capsule endoscope driven by HMD interface system showed the averaged errors of 0.68 degrees horizontally and 1.001 degrees vertically for given test angles. In the intuitiveness measurement, HMD interface system showed 1.33 times faster manipulation speed rather than the joystick interface system. In this respect, the HMD interface system for capsule endoscopy was expected to improve the overall diagnostic environment while maintaining comfort of patients and clinicians.

A Study on the application of IEEE 1451 for efficient measurement system (효과적인 계측시스템을 위한 IEEE 1451 적용에 관한 연구)

  • Cho, Hyang-Duck;Park, Woo-Il;Moon, Se-Sang;Kim, Woo-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.983-986
    • /
    • 2007
  • In this paper, we addressed the IEEE 1451.x that can organize a sensor network for efficient measurement system. IEEE 1451 provides standard interface, specification and Object model for example Network Capable Application Processor(NCAP), Transducer Electronic Data Sheet(TEDS), Smart Transducer Interface Module (STIM) and so on. Especially IEEE 1451.2 defines the TEDS Formats and STIM. The TEDS makes transducer to be used independently from device. NCAP makes the component of measurement system to be handled as an object. Therefore each function block constructs system by using Add-on. IEEE 1451.x can be expend the system with Add-on and Plug-and-Play by using smart sensor and connected with current network. We expect that this method can provide the efficiency and convenience when using the measurement system.

  • PDF

Design of On-line Readymixed Concrete Production System Using CAN Network (CAN네트워크를 사용한 레미콘 온라인 생산 시스템 설계)

  • 김동식;전태원;이홍희;김흥근;노의철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.359-365
    • /
    • 2003
  • This paper describes the on-line readymixed concrete production system using CAN network, which is a leading industrial control network. The CAN network interface circuits for moisture sensor and load cell sensor we designed for CAN network of readymixed concrete production system, respectively, and also the method for networking 2-states devices such as limit switch and lamp is suggested. The operating status of a overall remicon production system is monitored, and also the system is controlled with host computer through the network. The CAN network interface method is applied to the real readymixed concrete production system to verify the performance of proposed method.

Sensing and Control Virtual Environment Using Zigbee Sensor Technology (지그비 센서를 활용한 가상현실 제어)

  • Joo, Jae-Hong;Lee, Hyeon-Cheol;Hur, Gi Taek;Kim, Eun Seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.243-247
    • /
    • 2007
  • User interface is one of important factors to enhance one's presence in virtual reality systems. Due to the performance improvement of hardware, the virtual reality system is extensively utilized in games, broadcastings, educations, cultural contents, and so on. And, it is enlarged the necessity for researches on mobile interface to control the virtual reality system guaranteeing user's unrestricted movement. In this paper, we present a mobile interface, ZA sensor which is constructed with a Zigbee module and a Accelerometer to control the virtual environment. And, we propose a method of constructing the virtual reality system using the ZA sensor as a input device and practical applications of the system.

  • PDF