• Title/Summary/Keyword: Sensor IF module

Search Result 77, Processing Time 0.024 seconds

Algorithm of Copulsation Estimation for Counterpulsation using Pressure of VAD Outlet Cannula

  • Kang Jung-Soo;Lee Jung-Joo;Jung Min-Woo;Park Yong-Doo;Sun Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.2
    • /
    • pp.78-82
    • /
    • 2006
  • The ventricular assist device(VAD) helps to reduce the overload against the patient's native heart(NH). The pulsatile VAD pumps out the ventricular blood to the aorta with pulsatile flow. If the VAD pulsates simultaneously with the NH, the ventricle of the NH could confronts abnormally elevated aortic pressure, and this could deteriorate the ventricle rather than assist to recover it. Thus counterpulsation algorithms to avoid copulsation have been adopted by many VADs, but these methods utilize electrocardiography or arterial pressure signals, which may have difficulties to acquire consistently for a long period. In this study, the copulsation estimation algorithm for the counterpulsation is developed using the VAD outlet pressure signal. The VAD outlet pressure signal is good to maintain for a long time and the sensor part could be integrated to the VAD as a built-in module. From the VAD outlet pressure signal and its pump rate information calculated with Fast Fourier Transform, pulse peaks by the VAD and the NH were extracted and the next copulsation time at which the VAD and the NH would pulsate simultaneously was estimated. This estimation algorithm was implemented by using PC MATLAB software and tested for various pump rate conditions with mock circulation system. For each condition, the copulsation time was estimated successfully. Consequently, the results showed the possibility to use the outlet cannula pressure signal in the copulsation estimation.

A Study on the Development of a Work Operation Process Chart for Smart Distribution Board Fabrication (스마트 분전반 제작을 위한 작업 공정도 개발에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • This study presented the strength of the materials and parts for smart distribution board fabrication, and developed a work operation process chart for smart distribution board fabrication. This work operation process chart for smart distribution board fabrication complied with SPS-KEMC regulations, and the applicable range and object are less than 1,000 V and 1,000 Hz for the AC distribution board and less than 1,500 V for the DC distribution board. The power supply is 3 phase 4 wires ($3{\Phi}$ 4W), divided into a single phase circuit and a 3 phase circuit. In addition, the circuit was configured so that the leakage current flowing through the distribution line of the load could be monitored in real time by using the sensor module installed at the rear end of the circuit breaker. Therefore, the administrator can easily find the risk factor of the load since engineer can check the leakage current of each distribution line. In addition, if a leakage current greater than standard value flows, it is possible to generate an alarm against a short circuit and cut off the leakage current. The work operation process chart for the smart distribution board fabrication consists of the following steps: raw and subsidiary materials, sheet metal work, tube making, welding, painting, busbar fabrication, assembly and wiring, product inspection, shipment, etc. Moreover, symbols, ${\Delta}$, ${\nabla}$, ${\bigcirc}$, ${\Rightarrow}$, etc. were used according to the type of work and work progress so that workers can easily understand the progress of the work.

The Study on the Monitoring of Temperature and Humidity in Public Utilization Facilities (다중 이용 시설에 대한 온.습도 모니터링에 관한 연구)

  • Choi, Man-Yong;Chae, Kyung-Hee;Kim, Ki-Bok;Kim, Su-Un
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1470-1475
    • /
    • 2009
  • Until now for the safety of structures and equipment monitoring technology to measure the amount of the physical, if that is the one, one-point or single-source target is one the most. Therefore, becoming more numerous and complex to measure the amount of physical measurement technology that is comprehensive and complex, multi-source concepts to the monitoring of a multi-sensing technology is required. Have the same characteristics of multi-source multi-use space such as a multi-structure of facilities/equipment is. The people's safety in a multi-use facility will be directly related to life and even a little carelessness can lead to large-scale disaster occurs because of several factors, risks and to manage detect in advance the development of an intelligent monitoring technology is essential. Therefore, this study shows that multiple structures/facilities to improve the quality of human life in research to maintain a safe and comfortable living space for multi-source intelligence to the development of monitoring technology to achieve that goal, and the ubiquitous sensor network system on the basis of the wireless transmission module, and multiple research facilities/equipment for the ultra-small sensors for health monitoring study was performed.

  • PDF

Implementation of a WIPI-based Intelligent Home Service Robot (WIPI 기반의 지능형 홈서비스 로봇의 구현)

  • Kim, Jin-Hwan;Shin, Dong-Suk
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.19-28
    • /
    • 2008
  • In this paper, we implemented an intelligent home service robot system which alerts users to danger by wireless internet platforms for interoperability(WIPI) of a cellular phone. This paper discusses the three parts of the system: robot, middleware and mobile system. First, the robot consists of a gas sensor, a fire detector, ultrasonic sensors, motors, a camera and a Bluetooth module. The robot perceives various danger circumstances. Second, the middleware connects the robot and the mobile system. It monitors the robot and sends emergency notification SMS message to the user's cellular phone if in danger. Third, the mobile system sends commands which control the robot using TCP/IP protocol. The proposed scheme is to control the sensors of the robot part through Atmega 128 processor, and the robot and middleware parts will be installed in the household, and will be controled by mobile part from the outside.

A Study on the CMOS Camera robust to radiation environments (방사선 환경에 강인한 CMOS카메라에 관한 연구)

  • Baek, Dong-Hyun;Kim, Bae-Hoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2020
  • Human access is restricted to environment where radiation sources are used, however observation equipment should be radiation-resistant as it is exposed. Therefore, if tungsten with the highest specific gravity and melting point and the lowest lead were selected to reduce the dose to the Cobalt 60 radiation source to 1/8, Tu had a volume of 432.6cm3, a thickness of 2.4cm, and Pb had a volume of 961cm3,, a thickness of 3.6cm. By applying this method, produced a radiation resistant CMOS camera with a camera module using a CMOS Image sensor and a radiation shielding structured housing. As a result of applying the head detachable 2M AHD camera (No. ①) that survived the experiment to select the optimal shielding thickness, when shielding the associated equipment such as cameras, adapters, etc. is achieved, it was confirmed that the design of the structure is appropriate by operating well at doses higher than 1.88×106rad. Therefore, it is expected to secure the camera technology and business feasibility that can be applied to high radiation environments.

A Study on the Estimation of Energy Expenditure and falls measurement system for the elderly (고령자를 위한 에너지 소비 추정 및 낙상 측정 시스템에 관한 연구)

  • Lim, Chae-Young;Jeon, Ki-Man;Ko, Kwang-Cheol;Koh, Kwang-Nak;Kim, Kyung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • As we are turnning into the aged society, accidents by falling down are increasing in the aged people's group. In this paper, we design the system with the 3-Axis acceleration sensor which is composed by a single chip. The body activity signal is measured with the signal detector and RF communicator in this proposed system and the and falling by the entering signal pattern analysis with 3-Axis acceleration sensor. For the RF communication, we are using nRF24L01p and 8bits ATmega uC for the processor. The error of energy expenditure estimation between motor driven treadmill and proposed a body activity module was 7.8% respectively. Human activities and falling is monitored according to analyze and judge the critical value of the Signal Vector. as falled down if they don't turn off the alarm after specific period and the aged person's after falling down activities are their position and more.

A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning (IoT 및 딥 러닝 기반 스마트 팜 환경 최적화 및 수확량 예측 플랫폼)

  • Choi, Hokil;Ahn, Heuihak;Jeong, Yina;Lee, Byungkwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.672-680
    • /
    • 2019
  • This paper proposes "A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning" which gathers bio-sensor data from farms, diagnoses the diseases of growing crops, and predicts the year's harvest. The platform collects all the information currently available such as weather and soil microbes, optimizes the farm environment so that the crops can grow well, diagnoses the crop's diseases by using the leaves of the crops being grown on the farm, and predicts this year's harvest by using all the information on the farm. The result shows that the average accuracy of the AEOM is about 15% higher than that of the RF and about 8% higher than the GBD. Although data increases, the accuracy is reduced less than that of the RF or GBD. The linear regression shows that the slope of accuracy is -3.641E-4 for the ReLU, -4.0710E-4 for the Sigmoid, and -7.4534E-4 for the step function. Therefore, as the amount of test data increases, the ReLU is more accurate than the other two activation functions. This paper is a platform for managing the entire farm and, if introduced to actual farms, will greatly contribute to the development of smart farms in Korea.