• Title/Summary/Keyword: Sensor Fault Diagnosis

Search Result 149, Processing Time 0.025 seconds

Effective Techniques for Diagnosis and Test of Hard-to-Detect Faults in Analog Circuits (아날로그 회로의 난검출 고장을 위한 효과적인 진단 및 테스트 기법)

  • Lee, Jae-Min
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • Testing of analog(and mixed-signal) circuits has been a difficult task for test engineers and effective test techniques to solve these problems are required. This paper develops a new technique which increases fault detection and diagnosis rates for analog circuits by using extended MTSS (Modified Time Slot Specification) technique based on MTSS proposed by the author. High performance current sensors with digital outputs are used as core components for these techniques. A fault diagnosis structure with minimal hardware overhead in ATE is also described.

  • PDF

An Integrated Fault Detection and Isolation Method for Sensors and Actuators of LEO Satellite (저궤도 인공위성의 센서 및 구동기 통합 고장검출 및 분리 기법)

  • Lim, Jun-Kyu;Lee, Jun-Han;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1117-1124
    • /
    • 2011
  • An integrated fault detection and isolation method is proposed in this paper. The main objective of this paper is development fault detection, isolation and diagnosis algorithm based on the DKF (Decentralized Kalman Filter) and the bank of IMM (Interacting Multiple Model) filters using penalty scalar for both partial and total faults and the outlier detection algorithm for preventing false alarm also included. The proposed FDI (Fault Detection and Isolation) scheme is developed in four phases. In the first phase, the outlier detection filter is designed to prevent false alarm as a pre-filter. In the second phases, two local filters and master filter are designed to detect sensor faults. In the third phases, the proposed FDI scheme checks sensor residual to isolate sensor faults and 11 EKFs actuator fault models are designed to detect wherever actuator faults occur. In the last phases, four filters are designed to identify the fault type which is either the total fault or partial fault. The developed scheme can deal with not only sensor and actuator faults, but also preventing false alarm. An important feature of the proposed FDI scheme can decreases fault isolation time and figure out not only fault detection and isolation but also fault type identification. To verify the proposed FDI algorithm performance, the Simulator is also developed under the Matlab/Simulink environment.

Intelligent Conponent (인텔리전트 컨포넌트 (Intelligent Conponent))

  • Mizutaka, Jun;Seo, Gil-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.103-108
    • /
    • 2008
  • Automatic control makes the air-handling unit go into operation and determines the functions of high-efficient and energy-saving machines. Yamatake, an automatic control system manufacturer, have expanded fault detection and diagnosis, and data volumes so as to achieve higher technology in control by developing a sensor which makes field data visible, an actuator and Intelligent Conponent. This study, thus, focuses on applications for saving energy with Intelligent Conponent and goes in for easing global warming by creating future field data-based applications.

  • PDF

The Development of Fault Diagnosis System for Nuclear Power Plants with Optimal Sensor Location (원전 적용을 위한 최적 센서 위치를 가진 고장진단 시스템의 개발)

  • 김용민;홍호택박재홍
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.211-214
    • /
    • 1998
  • A detection filter assigns a specific direction to the response with respect to each fault, by which it can detect the occurrence of the several faults. The separability of a detection filter can be determined by the orthogonality among these directions. In this paper, we define the separability of a detection filter as the orthogonality of the directions in output space, and present it mathematically by using conditions number. An algorithm to determine the optimal sensor gain to maximize separability is proposed and applied to the PWR nuclear reactor model.

  • PDF

Realization of Remote Condition Monitoring System for Check Valve (체크밸브의 원격 상태감시 시스템 구현)

  • Lee Seung-Youn;Jeon Jeong-Seob;Lyou Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.662-668
    • /
    • 2005
  • This paper presents a realization of check valve condition monitoring system based on fault diagnosis algorithm and Fieldbus communication. We first acquired AE(acoustic emission) sensor data at the check valve test loop, extract fault features through the teamed neural network, and send the processed data to a remote site. The overall system has been implemented and experimented results are given to show its effectiveness.

Model-based and wavelet-based fault detection and diagnosis for biomedical and manufacturing applications: Leading Towards Better Quality of Life

  • Kao, Imin;Li, Xiaolin;Tsai, Chia-Hung Dylan
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.153-171
    • /
    • 2009
  • In this paper, the analytical fault detection and diagnosis (FDD) is presented using model-based and signal-based methodology with wavelet analysis on signals obtained from sensors and sensor networks. In the model-based FDD, we present the modeling of contact interface found in soft materials, including the biomedical contacts. Fingerprint analysis and signal-based FDD are also presented with an experimental framework consisting of a mechanical pneumatic system typically found in manufacturing automation. This diagnosis system focuses on the signal-based approach which employs multi-resolution wavelet decomposition of various sensor signals such as pressure, flow rate, etc., to determine leak configuration. Pattern recognition technique and analytical vectorized maps are developed to diagnose an unknown leakage based on the established FDD information using the affine mapping. Experimental studies and analysis are presented to illustrate the FDD methodology. Both model-based and wavelet-based FDD applied in contact interface and manufacturing automation have implication towards better quality of life by applying theory and practice to understand how effective diagnosis can be made using intelligent FDD. As an illustration, a model-based contact surface technology an benefit the diabetes with the detection of abnormal contact patterns that may result in ulceration if not detected and treated in time, thus, improving the quality of life of the patients. Ultimately, effective diagnosis using FDD with wavelet analysis, whether it is employed in biomedical applications or manufacturing automation, can have impacts on improving our quality of life.

A Diagnosis system of misalignments of linear motion robots using transfer learning (전이 학습을 이용한 선형 이송 로봇의 정렬 이상진단 시스템)

  • Su-bin Hong;Young-dae Lee;Arum Park;Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.801-807
    • /
    • 2024
  • Linear motion robots are devices that perform functions such as transferring parts or positioning devices, and require high precision. In companies that develop linear robot application systems, human workers are in charge of quality control and fault diagnosis of linear robots, and the result and accuracy of a fault diagnosis varies depending on the skill level of the person in charge. Recently, there have been many attempts to utilize artificial intelligence to diagnose faults in industrial devices. In this paper, we present a system that automatically diagnoses linear rail and ball screw misalignment of a linear robot using transfer learning. In industrial systems, it is difficult to obtain a lot of learning data, and this causes a data imbalance problem. In this case, a transfer learning model configured by retraining an established model is widely used. The information obtained by using an acceleration sensor and torque sensor was used, and its usefulness was evaluated for each case. After converting the signal obtained from the sensor into a spectrogram image, the type of abnormality was diagnosed using an image recognition artificial intelligence classifier. It is expected that the proposed method can be used not only for linear robots but also for diagnosing other industrial robots.

Fault Diagnosis of a Nonlinear Dynamic System Based on Sliding Mode

  • Yu, Wenxin;Wang, Junnian;Jiang, Dan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2504-2510
    • /
    • 2018
  • Actuator failures and the failures of controlled objects are often considered together. To overcome this limitation, a class of sliding mode observers for the fault diagnosis of nonlinear systems is designed in this paper. Due to the influence of the sliding mode function, the control strategy and the residual change of the observer exhibit certain trends governed by specific relations. Therefore, according to the changes in the control strategy and the observer residuals, the sensor and actuator faults in nonlinear systems can be determined. Finally, the effectiveness of the proposed method is verified based on simulations of a DC motor system.

Fault Detection and Diagnosis of an Air Handling Unit Based on Rule Bases (룰 베이스를 이용한 공조기의 고장검출 및 진단)

  • 한도영;주명재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.552-559
    • /
    • 2002
  • The fault detection and diagnosis (FDD) technology may be applied in order to decrease the energy consumption and the maintenance cost of the air conditioning system. In this study, rule bases and curve fitting models were used to detect faults in an air handling unit. Gradually progressed faults, such as the fan speed degradation, the coil water leakage, the humidifier nozzle clogging, the sensor degradation and the damper stoppage, were applied to the developed FBD system. Simulation results show good detections and diagnoses of these faults. Therefore, this method may be effectively used for the fault detection and diagnosis of the air handling unit.

Development of Smart Cargo Level Sensors Including Diagnostics Function for Liquid Cargo Ships (액체운반용 선박을 위한 진단기능을 가지는 스마트 카고 센서 개발)

  • Bae, Hyeon;Kim, Youn-Tai;Park, Dae-Hoon;Kim, Sung-Shin;Choi, Moon-Ho;Jang, Yong-Suk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.341-346
    • /
    • 2008
  • This paper is to develop a monitoring system with diagnosis for smart cargo sensors that is for management and maintenance of the liquid cargo ships. The main goal of the system is to achieve the total automation system of the cargo sensor. By this study, the active smart sensor for the liquid cargo ships is designed and developed that guarantees high-confidence, stability, and durability. The proposed system consists of a monitoring part of the steam pressure, high-level monitoring, over flowing monitoring, gas monitoring, and tank temperature monitoring. The signals transferred from each unit system are used for sensor diagnosis based on confidence and accuracy. Finally, in this study, the total supervisory monitoring system is developed to maintain and manage the cargo effectively based on fault diagnosis and prognosis of the each sensor system.