• Title/Summary/Keyword: Sensor Data Process

Search Result 990, Processing Time 0.025 seconds

A Time-Parameterized Data-Centric Storage Method for Storage Utilization and Energy Efficiency in Sensor Networks (센서 네트워크에서 저장 공간의 활용성과 에너지 효율성을 위한 시간 매개변수 기반의 데이타 중심 저장 기법)

  • Park, Yong-Hun;Yoon, Jong-Hyun;Seo, Bong-Min;Kim, June;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.2
    • /
    • pp.99-111
    • /
    • 2009
  • In wireless sensor networks, various schemes have been proposed to store and process sensed data efficiently. A Data-Centric Storage(DCS) scheme assigns distributed data regions to sensors and stores sensed data to the sensor which is responsible for the data region overlapping the data. The DCS schemes have been proposed to reduce the communication cost for transmitting data and process exact queries and range queries efficiently. Recently, KDDCS that readjusts the distributed data regions dynamically to sensors based on K-D tree was proposed to overcome the storage hot-spots. However, the existing DCS schemes including KDDCS suffer from Query Hot-Spots that are formed if the query regions are not uniformly distributed. As a result, it causes reducing the life time of the sensor network. In this paper, we propose a new DCS scheme, called TPDCS(Time-Parameterized DCS), that avoids the problems of storage hot-spots and query hot-spots. To decentralize the skewed. data and queries, the data regions are assigned by a time dimension as well as data dimensions in our proposed scheme. Therefore, TPDCS extends the life time of sensor networks. It is shown through various experiments that our scheme outperform the existing schemes.

Real-Time Sink Node Architecture for a Service Robot Based on Active Healthcare/Living-support USN (능동 건강/생활지원 USN 기반 서비스 로봇 시스템의 실시간 싱크 노드 구조)

  • Shin, Dong-Gwan;Yi, Soo-Yeong;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.720-725
    • /
    • 2008
  • This paper proposes a system architecture for USN with a service robot to provide more active assisted living services for elderly persons by monitoring their mental and physical well-being with USN environments at home, hospital, or silver town. Sensors embedded in USN are used to detect preventive measures for chronic disease. Logged data are transferred to main controller of a service robot via wireless channel in which the analysis of data is performed. For the purpose of handling emergency situations, it needs real-time processing on gathering variety sensor data, routing algorithms for sensor nodes to a moving sink node and processing of logged data. This paper realized multi-hop sensor network to detect user movements with biometric data transmission and performed algorithms on Xenomai, a real-time embedded Linux. To leverage active sensing, a mobile robot is used of which task was implemented with a priority to process urgent data came from the sink-node. This software architecture is anticipated to integrate sensing, communication and computing with real-time manner. In order to verify the usefulness of a proposed system, the performance of data transferring and processing on a real-time OS with non real-time OS is also evaluated.

Development of a Spatial DSMS for Efficient Real-Time Processing of Spatial Sensor Data (공간 센서 데이타의 효율적인 실시간 처리를 위한공간 DSMS의 개발)

  • Kang, Hong-Koo;Park, Chi-Min;Hong, Dong-Suk;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.45-57
    • /
    • 2007
  • Recently, the development of sensor devices has accelerated researches on advanced technologies like Wireless Sensor Networks. Moreover, spatial sensors using GPS lead to the era of the Ubiquitous Computing Environment which generally uses spatial information and non-spatial information together. In this new era, a real-time processing system for spatial sensor data is essential. In this reason, new data processing systems called DSMS(Data Stream Management System) are being developed by many researchers. However, since most of them do not support geometry types and spatial functions to process spatial sensor data, they are not suitable for the Ubiquitous Computing Environment. For these reasons, in this paper, we designed and implemented a spatial DSMS by extending STREAM which stands for STanford stREam datA Manager, to solve these problems. We added geometry types and spatial functions to STREAM in order to process spatial sensor data efficiently. In addition, we implemented a Spatial Object Manager to manage shared spatial objects within the system. Especially, we implemented the Simple Features Specification for SQL of OGC for interoperability and applied algorithms in GEOS to our system.

  • PDF

A computation method of reliability for preprocessing filters in the fire control system using Markov process and state transition probability matrix (Markov process 및 상태천이확률 행렬 계산을 통한 사격통제장치 전처리필터 신뢰성 산출 기법)

  • Kim, Jae-Hun;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.131-139
    • /
    • 1999
  • An easy and efficient method is proposed for a computation of reliability of preprocessing filters in the fire control system when the sensor data are frequently unreliable depending on the operation environment. It computes state transition probability matrix after modeling filter states as a Markov process, and computing false alarm and detection probability of each filter state under the given sensor failure probability. It shows that two important indices such as distributed state probability and error variance can be derived easily for a reliability assessment of the given sensor fusion system.

  • PDF

An Effective Data Distribution Scheme in Sensor Network for Internet of Things (사물인터넷을 위한 센서 네트워크에서 효율적인 데이터 분산 기법)

  • Kim, Jeong-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.769-774
    • /
    • 2015
  • Sensor network as an infrastructure of IoT(Internet of Things) has reliability issue because sensor nodes have limited memory as well as bounded battery. To improve the reliability of network, this paper proposes a data distribution scheme. The proposed algorithm distributes the data which each sensor node periodically produces into neighbor nodes that have enough memory as well as battery. This distribution process goes on more than 1 hop for overcoming unexpected spatial crash. Through simulation, we have confirmed that the proposed scheme can improve the resilience of IoT without affecting the life time of sensor network.

Efficient Digitizing in Reverse Engineering By Sensor Fusion (역공학에서 센서융합에 의한 효율적인 데이터 획득)

  • Park, Young-Kun;Ko, Tae-Jo;Kim, Hrr-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.61-70
    • /
    • 2001
  • This paper introduces a new digitization method with sensor fusion for shape measurement in reverse engineering. Digitization can be classified into contact and non-contact type according to the measurement devices. Important thing in digitization is speed and accuracy. The former is excellent in speed and the latter is good for accuracy. Sensor fusion in digitization intends to incorporate the merits of both types so that the system can be automatized. Firstly, non-contact sensor with vision system acquires coarse 3D point data rapidly. This process is needed to identify and loco]ice the object located at unknown position on the table. Secondly, accurate 3D point data can be automatically obtained using scanning probe based on the previously measured coarse 3D point data. In the research, a great number of measuring points of equi-distance were instructed along the line acquired by the vision system. Finally, the digitized 3D point data are approximated to the rational B-spline surface equation, and the free-formed surface information can be transferred to a commercial CAD/CAM system via IGES translation in order to machine the modeled geometric shape.

  • PDF

Dimensioning of linear and hierarchical wireless sensor networks for infrastructure monitoring with enhanced reliability

  • Ali, Salman;Qaisar, Saad Bin;Felemban, Emad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3034-3055
    • /
    • 2014
  • Wireless Sensor Networks have extensively been utilized for ambient data collection from simple linear structures to dense tiered deployments. Issues related to optimal resource allocation still persist for simplistic deployments including linear and hierarchical networks. In this work, we investigate the case of dimensioning parameters for linear and tiered wireless sensor network deployments with notion of providing extended lifetime and reliable data delivery over extensive infrastructures. We provide a single consolidated reference for selection of intrinsic sensor network parameters like number of required nodes for deployment over specified area, network operational lifetime, data aggregation requirements, energy dissipation concerns and communication channel related signal reliability. The dimensioning parameters have been analyzed in a pipeline monitoring scenario using ZigBee communication platform and subsequently referred with analytical models to ensure the dimensioning process is reflected in real world deployment with minimum resource consumption and best network connectivity. Concerns over data aggregation and routing delay minimization have been discussed with possible solutions. Finally, we propose a node placement strategy based on a dynamic programming model for achieving reliable received signals and consistent application in structural health monitoring with multi hop and long distance connectivity.

A study of in-process optical measurement of surface roughness

  • Noda, Atsuhiko;Harada, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.541-544
    • /
    • 1993
  • This paper attempts to propose new procedures to evaluate roughness of ground metallic surface in the range of 1-10.mu.m from data gained by an optical, in-process measurement of the surfaces. Studies are made to process the data of reflected lights pointed at the surface to be measured. Results obtained are compared with those of measurement by stylus roughness meter. Correlations between the two types of roughness measurement are well. The proposed method can be used as a sensor for a polishing robot.

  • PDF

Fundamental Research of Strain-based Wireless Sensor Network for Structural Health Monitoring of Highrise building (초고층 건물의 건전성 감시를 위한 변형률 기반 무선 센서 네트워크 기법의 기초적 연구)

  • Jung, Eun-Su;Park, Hyo-Seon;Choi, Suk-Won;Cha, Ho-Jung
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.429-432
    • /
    • 2007
  • For smart structure technologies, the interests in wireless sensor networks for structural health monitoring are growing. The wireless sensor networks reduce the installation of the wire embedded in the whole structure and save the costs. But the wireless sensor networks have lots of limits and there are lots of researches and developments of wireless sensor and the network for data process. Most of the researches of wireless sensor network is applying to the civil engineering structure and the researches for the highrise building are required. And strain-based SHM gives the local damage information of the structures which acceleration-based SHM can not. In this paper, concept of wireless sensor network for structural health monitoring of highrise building is suggested. And verifying the feasibility of the strain-based SHM a strain sensor board has developed and tested by experiments.

  • PDF

Study on Process Monitoring of Elliptical Vibration Cutting by Utilizing Internal Data in Ultrasonic Elliptical Vibration Device

  • Jung, Hongjin;Hayasaka, Takehiro;Shamoto, Eiji
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.571-581
    • /
    • 2018
  • In the present study, monitoring of elliptical vibration cutting process by utilizing internal data in the ultrasonic elliptical vibration device without external sensors such as a dynamometer and displacement sensor is investigated. The internal data utilized here is the change of excitation frequency, i.e. resonant frequency of the device, voltages applied to the piezoelectric actuators composing the device, and electric currents flowing through the actuators. These internal data change automatically in the elliptical vibration control system in order to keep a constant elliptical vibration against the change of the cutting process. Correlativity between the process and the internal data is described by using a vibration model of ultrasonic elliptical vibration cutting and verified by several experiments, i.e. planing and mirror surface finishing of hardened die steel carried out with single crystalline diamond tools. As a result, it is proved that it is possible to estimate the elements of elliptical vibration cutting process, e.g. tool wear and machining load, which are important for stable cutting in such precision machining.