• Title/Summary/Keyword: Sensor Data Compression

Search Result 73, Processing Time 0.03 seconds

Effects of hydrogen-enriched LPG fuelled engine on exhaust emission and thermal efficiency (LPG 엔진에서 수소첨가에 따른 배기 성능과 열효율에 미치는 영향)

  • Kim, jinho;Cho, unglae;Choi, gyeungho
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.3
    • /
    • pp.169-176
    • /
    • 2001
  • The purpose of study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The test engine was named heavy-duty variable compression ratio single cylinder engine (VCSCE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. Various sensors such as crank shaft position sensor (CPS) and hall sensor supply spark timing data to ignition controller. Displacement of VCSCE is $1858.2cm^3$. VCSCE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio(${\lambda}$) of this work was varied between 0.76 and 1.5. As a result, i) Maximum thermal efficiency occurred at ${\lambda}$ value 1.0. It was shown that thermal efficiency was increased approximately 5% with hydrogen enrichment at same ${\lambda}$ value. ii) Engine-out carbon monoxide (CO) emissions were decreased at a great rate under LPG/hydrogen mixture fuelling. iii) Total hydrocarbon (THC) emission was much exhausted in rich zone, same as CO. But THC was exhausted a little bit more in lean zone. iv) Finally, engine-out oxides of nitrogen (NOx) was increased with ${\lambda}$ value 1.0 zone at a greater rate with hydrogen enrichment due to high adiabatic flame temperature.

  • PDF

Estimation of Chest Compression Depth during Cardiopulmonary Resuscitation by using Single Frequency Analysis (단일주파수분석을 이용한 심폐소생술 흉부압박깊이 추정)

  • U, One Sang;Kang, Seong Min;Choi, Seong Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.211-217
    • /
    • 2017
  • During the emergency situation such as cardiac arrest, cardiopulmonary resuscitation(CPR) is the most important treatment to maintain patient's blood circulation. Since the quality of CPR can not be easily measured or evaluated by the eye, an assistive device with an accelerometer can help to assess the pressure depth of CPR. In this study, we propose a single frequency analysis method to reduce the error of the accelerometer by extracting only one frequency component from the Fourier transform process. To verify the effectiveness of the single frequency analysis, acceleration data at CPR conditions were measured at a sampling rate of 50 / sec using a wristband equipped with an acceleration sensor. Then, We compared the existing distance estimation method and the single frequency analysis method using the measured data. The amplitude value proportional to the compression depth was obtained by applying the single frequency analysis method.

Priority based Image Transmission Technique with DPCM in Wireless Multimedia (무선 멀티미디어 센서 네트워크에서 예측부호화를 통한 우선순위 기반 이미지 전송 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.1023-1031
    • /
    • 2010
  • With recent advances in hardware and wireless communication techniques, wireless multimedia sensor network which collects multimedia data through wireless sensor network has started to receive a lot of attentions from many researchers. Wireless multimedia sensor network requires a research of efficient compression and transmission to process the multimedia data which has large size, in the wireless sensor network that has very low network bandwidth. In this paper, we propose PIT protocol for the transmission based on the priority that classified by the DPCM compression. The PIT protocol sets different priority to the each subbands which are divided by the wavelet transform. The PIT protocol transmits the data with higher priority to guarantee the high image quality. The PIT protocol uses the characteristic of wavelet transform that the transformed image is very insensible to the data loss. In PIT protocol, each subbands of wavelet transformed image has fair weight in the compressed image to utilize the prioriy based transmission. The experiment results show that the PIT protocol improves the quality of image in spite of data loss.

Maximum Likelihood (ML)-Based Quantizer Design for Distributed Systems

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.152-158
    • /
    • 2015
  • We consider the problem of designing independently operating local quantizers at nodes in distributed estimation systems, where many spatially distributed sensor nodes measure a parameter of interest, quantize these measurements, and send the quantized data to a fusion node, which conducts the parameter estimation. Motivated by the discussion that the estimation accuracy can be improved by using the quantized data with a high probability of occurrence, we propose an iterative algorithm with a simple design rule that produces quantizers by searching boundary values with an increased likelihood. We prove that this design rule generates a considerably reduced interval for finding the next boundary values, yielding a low design complexity. We demonstrate through extensive simulations that the proposed algorithm achieves a significant performance gain with respect to traditional quantizer designs. A comparison with the recently published novel algorithms further illustrates the benefit of the proposed technique in terms of performance and design complexity.

The Redundancy Reduction Using Fuzzy C-means Clustering and Cosine Similarity on a Very Large Gas Sensor Array for Mimicking Biological Olfaction (생물학적 후각 시스템을 모방한 대규모 가스 센서 어레이에서 코사인 유사도와 퍼지 클러스터링을 이용한 중복도 제거 방법)

  • Kim, Jeong-Do;Kim, Jung-Ju;Park, Sung-Dae;Byun, Hyung-Gi;Persaud, K.C.;Lim, Seung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.59-67
    • /
    • 2012
  • It was reported that the latest sensor technology allow an 65536 conductive polymer sensor array to be made with broad but overlapping selectivity to different families of chemicals emulating the characteristics found in biological olfaction. However, the supernumerary redundancy always accompanies great error and risk as well as an inordinate amount of computation time and local minima in signal processing, e.g. neural networks. In this paper, we propose a new method to reduce the number of sensor for analysis by reducing redundancy between sensors and by removing unstable sensors using the cosine similarity method and to decide on representative sensor using FCM(Fuzzy C-Means) algorithm. The representative sensors can be just used in analyzing. And, we introduce DWT(Discrete Wavelet Transform) for data compression in the time domain as preprocessing. Throughout experimental trials, we have done a comparative analysis between gas sensor data with and without reduced redundancy. The possibility and superiority of the proposed methods are confirmed through experiments.

A Method for Sensor Data Compression Using Maximum/Minimum Values Within Compression Interval Unit in WSN Communication Faults (WSN 통신장애에서 압축구간 유닛 내의 최대/최소값을 이용한 센서 데이터 압축방법)

  • Shin, DongHyun;Kim, Changhwa
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.301-304
    • /
    • 2015
  • 센서네트워크는 기본적으로 센서 데이터를 활용하고 있기 때문에 센서 데이터는 센서네트워크의 구성요소 중 가장 중요하다 해도 과언이 아니다. 하지만 통신장애 발생 시 다양한 특징을 갖는 센서 데이터의 손실이 발생할 수 있다. 본 논문에서는 이를 위해 최대/최소값 중심으로 센서 데이터를 메모리에 저장 및 압축하는 2MC 방법을 제안하고, 보간법을 사용하여 데이터 복구 후 실제 데이터와 비교하여 그 성능을 검증하였다. 실험결과, 기존 방법과 비교하여 최대 8배까지 압축한 복구 데이터를 실제로 사용할 수 있는 정도이며, 평균 오차율은 8배 압축에서 기존 압축 방법 대비 최대 35% 감소하였다.

An Efficient Data Processing Method to Improve the Geostationary Ocean Color Imager (GOCI) Data Service (천리안 해양관측위성의 배포서비스 향상을 위한 자료 처리 효율화 방안 연구)

  • Yang, Hyun;Oh, Eunsong;Han, Tai-Hyun;Han, Hee-Jeong;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • We proposed and verified the methods to maintain data qualities as well as to reduce data volume for the Geostationary Ocean Color Imager (GOCI), the world's first ocean color sensor operated in geostationary orbit. For the GOCI level-2 data, 92.9% of data volume could be saved by only the data compression. For the GOCI level-1 data, however, just 20.7% of data volume could be saved by the data compression therefore another approach was required. First, we found the optimized number of bits per a pixel for the GOCI level-1 data from an idea that the quantization bit for the GOCI (i.e. 12 bit) was less than the number of bits per a pixel for the GOCI level-1 data (i.e. 32 bit). Experiments were conducted using the $R^2$ and the Modulation Transfer Function (MTF). It was quantitatively revealed that the data qualities were maintained although the number of bits per a pixel was reduced to 14. Also, we performed network simulations using the Network Simulator 2 (Ns2). The result showed that 57.7% of the end-toend delay for a GOCI level-1 data was saved when the number of bits per a pixel was reduced to 14 and 92.5% of the end-to-end delay for a GOCI level-2 data was saved when 92.9% of the data size was reduced due to the compression.

Network Camera for CMOS Camera Module Inspection (CMOS 카메라 모듈 검사를 위한 네트워크 카메라)

  • 신은철;최병욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.809-813
    • /
    • 2004
  • In this paper, we developed a network camera for CMOS camera module inspection. The design, implementation details including embedded linux porting and CPLD logics, and performance of network camera are described. The network camera consists of SoC(S3C4530A), CPLD and CMOS image sensor. In order to image data of CMOS image sensor we designed capture logics on CPLD by using VHDL program. Embedded Linux such as uClinux is performed on the network camera to utilize development environment and TCP/IP protocol specification. The application is based on socket communication between GUI on PC and Embedded Linux based network camera. When JPEG compression is applied, the transmission speed was improved enough for this system to be used for an alternative of expensive CCTV or remote monitoring system in a power plant and uninhabited places.

  • PDF

A Study on the Optimization and Bridge Seismic Response Test of CAFB Using El-centro Seismic Waveforms (El-centro 지진파형을 이용한 CAFB의 최적화 및 교량 지진응답실험에 관한 연구)

  • Heo, Gwang Hee;Lee, Chin Ok;Seo, Sang Gu;Park, Jin Yong;Jeon, Joon Ryong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.67-76
    • /
    • 2020
  • This study aims to optimize the cochlea-inspired artificial filter bank (CAFB) using El-Centro seismic waveforms and test its performance through a shaking table test on a two-span bridge model. In the process of optimizing the CAFB, El-Centro seismic waveforms were used for the purpose of evaluating how they would affect the optimizing process. Next, the optimized CAFB was embedded in the developed wireless-based intelligent data acquisition (IDAQ) system to enable response measurement in real-time. For its performance evaluation to obtain a seismic response in real-time using the optimized CAFB, a two-span bridge (model structures) was installed in a large shaking table, and a seismic response experiment was carried out on it with El-Centro seismic waveforms. The CAFB optimized in this experiment was able to obtain the seismic response in real-time by compressing it using the embedded wireless-based IDAQ system while the obtained compressed signals were compared with the original signal (un-compressed signal). The results of the experiment showed that the compressed signals were superior to the raw signal in response performance, as well as in data compression effect. They also proved that the CAFB was able to compress response signals effectively in real-time even under seismic conditions. Therefore, this paper established that the CAFB optimized by being embedded in the wireless-based IDAQ system was an economical and efficient data compression sensing technology for measuring and monitoring the seismic response in real-time from structures based on the wireless sensor networks (WSNs).