• Title/Summary/Keyword: Sensor Control

Search Result 6,018, Processing Time 0.037 seconds

Sensor Fault Detection and Compensation Schemes for Vector Controlled Induction Motor Drives (벡터제어 유도전동기 구동시스템을 위한 센서고장 검출 및 보상)

  • Ryu, Ji-Su;Lee, Hee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.42-45
    • /
    • 2001
  • In the speed-sensorless induction motor control systems, only a few percents of error in current measurement badly deteriorates the control performance. And early detection and accomodation of the faults of current sensor is very important to enhance the reliability of the induction motor control system. In this paper, we propose two sensor fault detection schemes having desired functions; fault detection, isolation of failed sensor and compensation of fault effect. The two schemes operate in real-time and employ EKFs (Extended Kalman Filter) for residual generation. Simulation results show that the proposed schemes are very useful in maintaining the control performance of the induction motor driven servo systems even in the face of sensor faults.

  • PDF

Design of a Four-axis Force/Moment Sensor for Measuring the Applied Force to Wrist (손목에 가해지는 힘측정을 위한 4축 힘/모멘트센서 설계)

  • Hong, Tae-Kyung;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1011-1016
    • /
    • 2013
  • Patients have the paralysis of their wrists, and can't use of their wrists freely. But their wrists can be recovered by wrist-bending rehabilitation exercise. Professional rehabilitation therapeutists exercise the wrists of patients in hospital. But the wrists of patients have not exercised enough for the rehabilitation, because the therapeutists are much less than patients in number. Therefore, the wrist rehabilitation robot should be developed, and it have to measure the applied force to the patients' wrists for their safety. In this paper, the four-axis force/moment sensor was designed for the wrist rehabilitation robot. As a test results, the interference error of the four-axis force/moment sensor was less than 0.91%. It is thought that the sensor can be used to measure the applied force to the patients' wrists.

Auto-parking Controller of Omnidirectional Mobile Robot Using Image Localization Sensor and Ultrasonic Sensors (영상위치센서와 초음파센서를 사용한 전 방향 이동로봇의 자동주차 제어기)

  • Yun, Him Chan;Park, Tae Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.571-576
    • /
    • 2015
  • This paper proposes an auto-parking controller for omnidirectional mobile robots. The controller uses the multi-sensor system including ultrasonic sensor and camera. The several ultrasonic sensors of robot detect the distance between robot and each wall of the parking lot. The camera detects the global position of robot by capturing the image of artificial landmarks. To improve the accuracy of position estimation, we applied the extended Kalman filter with adaptive fuzzy controller. Also we developed the fuzzy control system to reduce the settling time of parking. The experimental results are presented to verify the usefulness of the proposed controller.

Quality Monitoring Method Analysis for GNSS Ground Station Monitoring and Control Subsystem (위성항법 지상국 감시제어시스템 품질 감시 기법 분석)

  • Jeong, Seong-Kyun;Lee, Sang-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • GNSS(Global Navigation Satellite System) Ground Station performs GNSS signal acquisition and processing. This system generates error correction information and distributes them to GNSS users. GNSS Ground Station consists of sensor station which contains receiver and meteorological sensor, monitoring and control subsystem which monitors and controls sensor station, control center which generates error correction information, and uplink station which transmits correction information to navigation satellites. Monitoring and control subsystem acquires and processes navigation data from sensor station. The processed data is transmitted to GNSS control center. Monitoring and control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation determination module, independent quality monitoring module, and system maintenance and management module. The independent quality monitoring module inspects navigation signal, data, and measurement. This paper introduces independent quality monitoring and performs the analysis using measurement data.

Optimal SMDP-Based Connection Admission Control Mechanism in Cognitive Radio Sensor Networks

  • Hosseini, Elahe;Berangi, Reza
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.345-352
    • /
    • 2017
  • Traffic management is a highly beneficial mechanism for satisfying quality-of-service requirements and overcoming the resource scarcity problems in networks. This paper introduces an optimal connection admission control mechanism to decrease the packet loss ratio and end-to-end delay in cognitive radio sensor networks (CRSNs). This mechanism admits data flows based on the value of information sent by the sensor nodes, the network state, and the estimated required resources of the data flows. The number of required channels of each data flow is estimated using a proposed formula that is inspired by a graph coloring approach. The proposed admission control mechanism is formulated as a semi-Markov decision process and a linear programming problem is derived to obtain the optimal admission control policy for obtaining the maximum reward. Simulation results demonstrate that the proposed mechanism outperforms a recently proposed admission control mechanism in CRSNs.

The Design and Implementation of Automatic Control System of Living Environment Based on Ubiquitous Sensor Network (유비쿼터스 센서 네트워크 기반의 생활환경 자동제어 시스템 설계 및 구현)

  • Yun, Ji-Hoon;Moon, Seung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The ubiquitous sensor network technique is widely applied to variety of information fields such as home automations, logistics, traffic controls, public administrations, health and environment monitoring and etc. It is particularly useful in the areas where energy consumption is minimal and where continuous monitoring of the surrounding environments, which generates streams of data, are required. In this study, we have designed and implemented a living environment automatic control system which collects the streams of temperature, humidity, light and noise data of a simulated house setting in real-time fashion, then controls the home environment based on the collected data according to the users favorites. In order to differentiate the proposed system from the currently existing similar system, we have demonstrated not only the feasibility of collecting data using sensor network in the controlled environment but also the ability to control the various household equipments through wireless communications.

Experiments on Vibration Control of Laminated Shell Structure with Piezoelectric Material (압전 재료를 이용한 셸형 복합적층판의 진동제어에 대한 실험)

  • 황우석;고성현;박현철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.153-156
    • /
    • 2003
  • Many researchers have tried to develop the piezoelectric shell element and verified them with the benchmarking problem of the piezoelectric bimorph beam since there is no experimental result for the control of shell structure with piezoelectric sensor/actuator. In this paper, the experiments are designed and performed to verify the control Performance of piezoelectric sensor/actuator on the shell structure. PVDF is easy to be attached on the surface of a shell structure but makes weak control forces. On the contrary, PZT makes control forces large enough to control the structure, but it is not easy to make a PZT element with curvature. To use PVDF as an actuator, the structure should be designed as flexible as possible and the voltage amplifier could make high control voltage. PVDF actuator powered by a voltage amplifier that generates output voltage from -200 to +200 volts, shows little control performance to control the vibration of an arch type shell structure. The performance of sensor looks good and the negative velocity feedback control works perfectly. The actuator voltage seems to be too small to verify the control effect Quantitatively. An experiment with high voltage amplifier is scheduled to verify the control effect Quantitatively.

  • PDF

Development of a Contact Type Height Sensor to Measure Ground Clearance of an Agricultural Tractor (농용 트랙터용 접촉식 지상고 측정 센서 개발)

  • Lee, Choong-Ho;Lee, Je-Yong;Lee, Sang-Sik
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • The tillage depth control system is one of the most salient control system of tractor implements. A contact-type height sensor was developed to measure ground clearance for the tillage depth control. The height sensor was fabricated in this study, and its efficacy in a tillage depth control system was evaluated. Experiments were conducted in order to determine both static and dynamic detection characteristics of the height sensor using soil bin system on the sampled soil (sandy loam, sand, clay loam). The results of the static detection characteristics showed that in the case, sandy loam soil despite and clay loam soil at a wet basis moisture content of 30%, large measurement errors were observed a due to penetration of a plastic puck into the sampled soil. The results of the dynamic detection characteristics showed that the height sensor detected the distance from the ground of sandy loam soil despite the uneven nature of the ground surface and the changes in traveling speed $1km/h{\sim}5km/h$ at a wet basis moisture content of 10%.

Design and Implementation the Control System of Automatic Spry Based on Sensor Network Environment (센서네트워크 환경 기반의 자동 분무기 제어시스템의설계 및 구현)

  • Kwak, Yoon-Sik;Goo, Boon-Kun;Cheong, Seung-Kook
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, we design and implement a automatic control system of wireless sensor network based sprayer for hog barns. The proposed control system is driven by events from sensor nodes. It gathers various sensor readings such as temperature, humid, water level and water temperature, and controls the sprayer in real time by analyzing the sensor readings. Through experiments, we show that the proposed control system manages temperature and humidity steadily. Our proposed system enhances the existing system about 33% for temperature management and 37.3% for humidity management.

An Accelerometer-Assisted Power Management for Wearable Sensor Systems

  • Lee, Woosik;Lee, Byoung-Dai;Kim, Namgi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.318-330
    • /
    • 2015
  • In wearable sensor systems (WSSs), sensor nodes are deployed around human body parts such as the arms, the legs, the stomach, and the back. These sensors have limited lifetimes because they are battery-operated. Thus, transmission power control (TPC) is needed to save the energy of sensor nodes. The TPC should control the transmission power level (TPL) of sensor nodes based on current channel conditions. However, previous TPC algorithms did not precisely estimate the channel conditions. Therefore, we propose a new TPC algorithm that uses an accelerometer to directly measure the current channel condition. Based on the directly measured channel condition, the proposed algorithm adaptively adjusts the transmission interval of control packets for updating TPL. The proposed algorithm is efficient because the power consumption of the accelerometer is much lower than that of control packet transmissions. To evaluate the effectiveness of our approach, we implemented the proposed algorithm in real sensor devices and compared its performance against diverse TPC algorithms. Through the experimental results, we proved that the proposed TPC algorithm outperformed other TPC algorithms in all channel environments.