• Title/Summary/Keyword: Sensor Assessment

Search Result 393, Processing Time 0.032 seconds

Electrical Life Time Constant Estimation of Ceramic Element for Sensor (센서용 세라믹 소체의 전기적 수명지수 산출)

  • Jeong, Joo-Young;Kang, Dong-Sik;Sun, Jong-Ho;Heo, Jong-Cheol;Choo, Young-Bae;Park, Chung-Hoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1995-1999
    • /
    • 2009
  • A partial discharge(PD) measurement is a very effective method to assess the insulation condition of high-voltage machines. It is necessary that the life time of the on-line PD measurement sensor is assessed. Therefore, the electrical life time assessment method of ceramic element was reviewed in order to estimate the life time of the on-line PD measurement sensor. The samples were prepared according to the reviewed method and were tested at 8kV, 9kV and 10kV. Based on the obtained results, the life time constant is shown above 59. Also, it is assumed that the estimated life time constant can be used to anticipate the life time and to assess the conformity of the on-line PD measurement sensor.

Global environment change monitoring using the next generation satellite sensor, SGLI/GCOM-C

  • HONDA Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.11-13
    • /
    • 2005
  • The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concluded that many collective observations gave a aspect of a global warming and other changes in the climate system. Future earth observation using satellite data should monitor global climate change, and should contribute to social benefits. Especially, human activities has given the big impacts to earth environment This is a very complex affair, and nature itself also impacts the clouds, namely the seasonal variations. JAXA (former NASDA) has the plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, is an optical sensor from Near-UV to TIR. This sensor is the GLI follow-on sensor, which has the various new characteristics. Polarized/multi-directional channels and 250m resolution channels are the unique characteristics on this sensor. This sensor can be contributed to clarification of coastal change in sea surface. This paper shows the introduction of the unique aspects and characteristics of the next generation satellite sensor, SGLIIGCOM-C, and shows the preliminary research for this sensor.

  • PDF

EPC method for delamination assessment of basalt FRP pipe: electrodes number effect

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.69-84
    • /
    • 2017
  • Delamination is the most common failure mode in layered composite materials. The author have found that the electrical potential change (EPC) technique using response surfaces method is very effective in assessment delamination in basalt fiber reinforced polymer (FRP) laminate composite pipe by using electrical capacitance sensor (ECS). In the present study, the effect of the electrodes number on the method is investigated using FEM analyses for delamination location/size detection by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Three cases of electrodes number are analyzed here are eight, twelve and sixteen electrodes, afterwards, the delamination is introduced into between the three layers [$0^{\circ}/90^{\circ}/0^{\circ}$]s laminates pipe, split into eight, twelve and sixteen scenarios for cases of eight, twelve and sixteen electrodes respectively. Response surfaces are adopted as a tool for solving inverse problems to estimate delamination location/size from the measured EPC of all segments between electrodes. As a result, it was revealed that the estimation performances of delamination location/size depends on the electrodes number. For ECS, the high number of electrodes is required to obtain high estimation performances of delamination location/size. The illustrated results are in excellent agreement with solutions available in the literature, thus validating the accuracy and reliability of the proposed technique.

Mathematical model for assessment of the safety of over three-span steel beams based on average strains from long gage optic sensor (평균변형률을 이용한 3경간 이상 연속 철골보의 안전성 평가 기법)

  • Jung Seong-Moon;Lee Hong-Min;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.159-166
    • /
    • 2006
  • Although the strain distribution along the length of a beam in buildings or infrastructures is non-uniform, most fiber optic sensors are point sensors that can measure the strain only at a local point of a beam. Long gage fiber optic sensors that measure integrated strain over a relatively long length can consider strain variation. This type of sensor was found to be efficient and useful for monitoring large-scale structures. On the other hand, the maximum strain or stress in a beam can not be measured with long gage optic sensors. However, for the assessment of the safety of multi-span steel beams subjected to various vertical loads, the maximum strain or stress measured during monitoring is required for comparison with the allowable stress of the beam calculated by a design code. Therefore, in this paper, mathematical models are presented for determination of the maximum values of strains in more three-span steel beams based on the average strains measured by long gage optic sensors.

  • PDF

Smart Concrete Structures with Optical Fiber Sensors

  • Kim, Ki-Soo
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.109-114
    • /
    • 1999
  • Recently the interest in the safety assessment of civil infrastructures has increased. As bridge structures become large-scale, it is necessary to monitor and maintain the safety of large bridges, which requires smart systems that can make long-term monitoring a reality . Civil engineers have applied monitoring systems to several bridges, such as the New Haeng-Ju Bridge and Riverside Urban Highway Bridge, but these applications have some problems with the sensors for long-term measurement, setup techniques for the bridge monitoring system and the assessment of measured data. In the present study, an optical fiber sensor smart system was tested and confirmed in laboratory tests on the concrete members. By Attaching optical fiber sensors to the structural parts of the Sung-San Bridge, the bridge load test was measured. These smart concrete structure systems can be applied to bridges and the load capacity of the bridge can assessed.

  • PDF

Lifespan assessment of piezoelectric sensors under disposal condition of high-level nuclear waste repository

  • Changhee Park;Hyun-Joong Hwang;Chang-Ho Hong;Jin-Seop Kim;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.529-539
    • /
    • 2024
  • A high-level nuclear waste (HLW) repository is designed for the long-term disposal of high-level waste. Positioned at depths of 500-1000 meters, it offers an alternative to the insufficient storage space for spent fuels, providing a long-term solution. High-level waste emits heat and radiation, causing structural deterioration, including strength reduction and cracks. Therefore, the use of piezoelectric sensors for structural health monitoring is essential for evaluating the safety of the structure over time. Unlike other structures, the HLW repository restricts human access after the disposal of HLW, rendering sensor replacement impossible. Therefore, it is necessary to assess both the lifespan and suitability of sensors under the disposal conditions in the HLW repository. This study employed an accelerated life test (ALT) to assess the sensor's lifespan under disposal conditions. Failure modes, failure mechanisms, and operational limits were analyzed through accelerated stress test (AST). Additionally, the parameters of the Weibull life probability distribution and the Arrhenius accelerated life model were estimated through statistical methods, including the likelihood ratio test, maximum likelihood estimation, and hypothesis testing. Results confirmed that the sensor's lifespan decreases significantly with the increase in the temperature limit of the HLW repository. The findings of this study can be used for improving sensor lifespan through shielding, development of alternative sensors, or lifespan evaluation of alternative monitoring sensors.

Measuring displacements of a railroad bridge using DIC and accelerometers

  • Hoag, Adam;Hoult, Neil A.;Take, W. Andy;Moreu, Fernando;Le, Hoat;Tolikonda, Vamsi
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.225-236
    • /
    • 2017
  • Railroad bridges in North America are an integral but aging part of the railroad network and are typically only monitored using visual inspections. When quantitative information is required for assessment, railroads often monitor bridges using accelerometers. However without a sensor to directly measure displacements, it is difficult to interpret these results as they relate to bridge performance. Digital Image Correlation (DIC) is a non-contact sensor technology capable of directly measuring the displacement of any visible bridge component. In this research, a railroad bridge was monitored under load using DIC and accelerometers. DIC measurements are directly compared to serviceability limits and it is observed that the bridge is compliant. The accelerometer data is also used to calculate displacements which are compared to the DIC measurements to assess the accuracy of the accelerometer measurements. These measurements compared well for zero-mean lateral data, providing measurement redundancy and validation. The lateral displacements from both the accelerometers and DIC at the supports were then used to determine the source of lateral displacements within the support system.

Experimental assessment of the piezoelectric transverse d15 shear sensing mechanism

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.567-585
    • /
    • 2014
  • The piezoelectric transverse $d_{15}$ shear sensing mechanism is firstly assessed experimentally for a cantilever smart sandwich plate made of a piezoceramic axially poled patched core and glass fiber reinforced polymer composite faces. Different electrical connections are tested for the assessment of the sensor performance under a varying amplitude harmonic (at 24 Hz) force. Also, the dynamic response of the smart sandwich composite structure is monitored using different acquisition devices. The obtained experimentally sensed voltages are compared to those resulting from the benchmark three-dimensional piezoelectric coupled finite element simulations using a commercial code where realistic features, like equipotential conditions on the patches' electrodes and mechanical updating of the clamp, are considered. Numerically, it is found that the stiffness of the clamp, which is much softer than the ideal one, has an enormous influence on the sensed voltage of its adjacent patch; therefore, sensing with the patch on the free side would be more advantageous for a cantilever configuration. Apart from confirming the latter result, the plate benchmark experimental assessment showed that the parallel connection of its two oppositely poled patches has a moderate performance but better than the clamp side patch acting as an individual sensor.

A Development and Performance Test of Voltage Measurement Accuracy Assessment System for Distribution Equipment (배전기기 전압계측 정밀도 평가시스템 개발 및 성능시험)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Kim, Jae-Han
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.83-89
    • /
    • 2013
  • Power distribution system has been changed from radial system to closed loop or mesh system due to connection of distributed generation growth. Data from distribution equipments which are installed at distribution line is required to be accurate for the performance of DMS(Distribution Management System). This paper analyzes the voltage measurement data from distribution equipment. However, the results of the analysis are confirmed to have some errors in voltage measurement data from distribution equipment. These errors come from aging of voltage sensor in distribution equipment and inaccurate data transfer to FRTU(feeder remote terminal unit) through the controller. The main problem is that the voltage measurement data of distribution equipment can not be assessed after it's first installation at the distribution line. The voltage measurement accuracy assessment system is to assess the voltage measurement data from distribution equipment on hot-line. This study had a field test to verify the performance of system.

Multi-sensor data fusion based assessment on shield tunnel safety

  • Huang, Hongwei;Xie, Xin;Zhang, Dongming;Liu, Zhongqiang;Lacasse, Suzanne
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.693-707
    • /
    • 2019
  • This paper proposes an integrated safety assessment method that can take multiple sources data into consideration based on a data fusion approach. Data cleaning using the Kalman filter method (KF) was conducted first for monitoring data from each sensor. The inclination data from the four tilt sensors of the same monitoring section have been associated to synchronize in time. Secondly, the finite element method (FEM) model was established to physically correlate the external forces with various structural responses of the shield tunnel, including the measured inclination. Response surface method (RSM) was adopted to express the relationship between external forces and the structural responses. Then, the external forces were updated based on the in situ monitoring data from tilt sensors using the extended Kalman filter method (EKF). Finally, mechanics parameters of the tunnel lining were estimated based on the updated data to make an integrated safety assessment. An application example of the proposed method was presented for an urban tunnel during a nearby deep excavation with multiple source monitoring plans. The change of tunnel convergence, bolt stress and segment internal forces can also be calculated based on the real time deformation monitoring of the shield tunnel. The proposed method was verified by predicting the data using the other three sensors in the same section. The correlation among different monitoring data has been discussed before the conclusion was drawn.