• Title/Summary/Keyword: Sensor Acceleration

Search Result 721, Processing Time 0.031 seconds

Threshold-based Pre-impact Fall Detection and its Validation Using the Real-world Elderly Dataset (임계값 기반 충격 전 낙상검출 및 실제 노인 데이터셋을 사용한 검증)

  • Dongkwon Kim;Seunghee Lee;Bummo Koo;Sumin Yang;Youngho Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.384-391
    • /
    • 2023
  • Among the elderly, fatal injuries and deaths are significantly attributed to falls. Therefore, a pre-impact fall detection system is necessary for injury prevention. In this study, a robust threshold-based algorithm was proposed for pre-impact fall detection, reducing false positives in highly dynamic daily-living movements. The algorithm was validated using public datasets (KFall and FARSEEING) that include the real-world elderly fall. A 6-axis IMU sensor (Movella Dot, Movella, Netherlands) was attached to S2 of 20 healthy adults (aged 22.0±1.9years, height 164.9±5.9cm, weight 61.4±17.1kg) to measure 14 activities of daily living and 11 fall movements at a sampling frequency of 60Hz. A 5Hz low-pass filter was applied to the IMU data to remove high-frequency noise. Sum vector magnitude of acceleration and angular velocity, roll, pitch, and vertical velocity were extracted as feature vector. The proposed algorithm showed an accuracy 98.3%, a sensitivity 100%, a specificity 97.0%, and an average lead-time 311±99ms with our experimental data. When evaluated using the KFall public dataset, an accuracy in adult data improved to 99.5% compared to recent studies, and for the elderly data, a specificity of 100% was achieved. When evaluated using FARSEEING real-world elderly fall data without separate segmentation, it showed a sensitivity of 71.4% (5/7).

Vest-type System on Machine Learning-based Algorithm to Detect and Predict Falls

  • Ho-Chul Kim;Ho-Seong Hwang;Kwon-Hee Lee;Min-Hee Kim
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.43-54
    • /
    • 2024
  • Purpose: Falls among persons older than 65 years are a significant concern due to their frequency and severity. This study aimed to develop a vest-type embedded artificial intelligence (AI) system capable of detecting and predicting falls in various scenarios. Methods: In this study, we established and developed a vest-type embedded AI system to judge and predict falls in various directions and situations. To train the AI, we collected data using acceleration and gyroscope values from a six-axis sensor attached to the seventh cervical and the second sacral vertebrae of the user, considering accurate motion analysis of the human body. The model was constructed using a neural network-based AI prediction algorithm to anticipate the direction of falls using the collected pedestrian data. Results: We focused on developing a lightweight and efficient fall prediction model for integration into an embedded AI algorithm system, ensuring real-time network optimization. Our results showed that the accuracy of fall occurrence and direction prediction using the trained fall prediction model was 89.0% and 78.8%, respectively. Furthermore, the fall occurrence and direction prediction accuracy of the model quantized for embedded porting was 87.0 % and 75.5 %, respectively. Conclusion: The developed fall detection and prediction system, designed as a vest-type with an embedded AI algorithm, offers the potential to provide real-time feedback to pedestrians in clinical settings and proactively prepare for accidents.

The Individual Discrimination Location Tracking Technology for Multimodal Interaction at the Exhibition (전시 공간에서 다중 인터랙션을 위한 개인식별 위치 측위 기술 연구)

  • Jung, Hyun-Chul;Kim, Nam-Jin;Choi, Lee-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.19-28
    • /
    • 2012
  • After the internet era, we are moving to the ubiquitous society. Nowadays the people are interested in the multimodal interaction technology, which enables audience to naturally interact with the computing environment at the exhibitions such as gallery, museum, and park. Also, there are other attempts to provide additional service based on the location information of the audience, or to improve and deploy interaction between subjects and audience by analyzing the using pattern of the people. In order to provide multimodal interaction service to the audience at the exhibition, it is important to distinguish the individuals and trace their location and route. For the location tracking on the outside, GPS is widely used nowadays. GPS is able to get the real time location of the subjects moving fast, so this is one of the important technologies in the field requiring location tracking service. However, as GPS uses the location tracking method using satellites, the service cannot be used on the inside, because it cannot catch the satellite signal. For this reason, the studies about inside location tracking are going on using very short range communication service such as ZigBee, UWB, RFID, as well as using mobile communication network and wireless lan service. However these technologies have shortcomings in that the audience needs to use additional sensor device and it becomes difficult and expensive as the density of the target area gets higher. In addition, the usual exhibition environment has many obstacles for the network, which makes the performance of the system to fall. Above all these things, the biggest problem is that the interaction method using the devices based on the old technologies cannot provide natural service to the users. Plus the system uses sensor recognition method, so multiple users should equip the devices. Therefore, there is the limitation in the number of the users that can use the system simultaneously. In order to make up for these shortcomings, in this study we suggest a technology that gets the exact location information of the users through the location mapping technology using Wi-Fi and 3d camera of the smartphones. We applied the signal amplitude of access point using wireless lan, to develop inside location tracking system with lower price. AP is cheaper than other devices used in other tracking techniques, and by installing the software to the user's mobile device it can be directly used as the tracking system device. We used the Microsoft Kinect sensor for the 3D Camera. Kinect is equippedwith the function discriminating the depth and human information inside the shooting area. Therefore it is appropriate to extract user's body, vector, and acceleration information with low price. We confirm the location of the audience using the cell ID obtained from the Wi-Fi signal. By using smartphones as the basic device for the location service, we solve the problems of additional tagging device and provide environment that multiple users can get the interaction service simultaneously. 3d cameras located at each cell areas get the exact location and status information of the users. The 3d cameras are connected to the Camera Client, calculate the mapping information aligned to each cells, get the exact information of the users, and get the status and pattern information of the audience. The location mapping technique of Camera Client decreases the error rate that occurs on the inside location service, increases accuracy of individual discrimination in the area through the individual discrimination based on body information, and establishes the foundation of the multimodal interaction technology at the exhibition. Calculated data and information enables the users to get the appropriate interaction service through the main server.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

A Study on Tension for Cables of a Cable-stayed Bridge Damper is Attached (댐퍼가 부착된 사장교의 케이블 장력에 관한연구)

  • Park, Yeon Soo;Choi, Sun Min;Yang, Won Yeol;Hong, Hye Jin;Kim, Woon Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.609-616
    • /
    • 2008
  • Recently, many ocean bridges that connect land to island or island to island have been constructed along with the improvement of the nation's economy. Long-span bridges can be categorized as suspension bridge, cable-stayed bridge, arch bridge and truss bridge. In this study, correction with respect to construction error can be presented on site through the monitoring of the cable tension change of real structure for four major construction stages so that construction accuracy, including the management of profiles, can be improved. A vibration method, the so-called indirect method that uses the cable's natural frequency changes from the acceleration sensor installed on the cable, is applied in measuring cable tension. In this study, the estimation formula for the effective length of cable with damper is presented by comparing and analyzing between actual measurement and analysis result for the change of the cable's effective length. By the way, it is known that the reliability of estimating cable tension by applying the former method that uses the net distance from damper to anchorage is low. Therefore, for future reference of the maintenance stage, the presented formula for estimating the effective length of cable can be used as a reference for the rational decision-making, such as the re-tensioning and replacement of cable.

Development of Earthquake Early Warning System nearby Epicenter based on P-wave Multiple Detection (진원지 인근 지진 조기 경보를 위한 선착 P파 다중 탐지 시스템 개발)

  • Lee, Taehee;Noh, Jinseok;Hong, Seungseo;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.107-114
    • /
    • 2019
  • In this paper, the P-wave multiple detection system for the fast and accurate earthquake early warning nearby the epicenter was developed. The developed systems were installed in five selected public buildings for the validation. During the monitoring, a magnitude 2.3 earthquake occurred in Pohang on 26 September 2019. P-wave initial detection algorithms were operated in three out of four systems installed in Pohang area and recorded as seismic events. At the nearest station, 5.5 km from the epicenter, P-wave signal was detected 1.2 seconds after the earthquake, and S-wave was reached 1.02 seconds after the P-wave reached, providing some alarm time. The maximum accelerations recorded in three different stations were 6.28 gal, 6.1 gal, and 5.3 gal, respectively. The alarm algorithm did not work, due to the high threshold of the maximum ground acceleration (25.1 gal) to operate it. If continuous monitoring and analysis are to be carried out in the future, the developed system could use a highly effective earthquake warning system suitable for the domestic situation.

A Statistical Analysis of External Force on Electric Pole due to Meteorological Conditions (기상현상에 의한 전주 외력의 통계적 분석)

  • Park, Chul Young;Shin, Chang Sun;Cho, Yong Yun;Kim, Young Hyun;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.437-444
    • /
    • 2017
  • Electric Pole is a supporting beam used for power transmission/distribution which is sensitive to external force change of environmental factors. Therefore, power facilities have many difficulties in terms of maintenance/conservation from external environmental changes and natural disasters that cause a great economic impact. The aerial wire cause elasticity due to the influence of temperature, or factors such as wind speed and wind direction, that weakens the electric pole. The situation may lead to many safety risk in day-to-day life. But, the safety assessment of the pole is carried out at the design stage, and aftermath is not considered. For the safety and maintenance purposes, it is very important to analyze the influence of weather factors on external forces periodically. In this paper, we analyze the acceleration data of the sensor nodes installed in electric pole for maintenance/safety purpose and use Kalman filter as noise compensation method. Fast Fourier Transform (FFT) is performed to analyze the influence of each meteorological factor, along with the meteorological factors on frequency components. The result of the analysis shows that the temperature, humidity, solar radiation, hour of daylight, air pressure, wind direction and wind speed were influential factors. In this paper, the influences of meteorological factors on frequency components are different, and it is thought that it can be an important factor in achieving the purpose of safety and maintenance.

A Model-Fitting Approach of External Force on Electric Pole Using Generalized Additive Model (일반화 가법 모형을 이용한 전주 외력 모델링)

  • Park, Chul Young;Shin, Chang Sun;Park, Myung Hye;Lee, Seung Bae;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.445-452
    • /
    • 2017
  • Electric pole is a supporting beam used for power transmission/distribution which accelerometer are used for measuring a external force. The meteorological condition has various effects on the external forces of electric pole. One of them is the elasticity change of the aerial wire. It is very important to perform modelling. The acceleration sensor is converted into a pitch and a roll angle. The meteorological condition has a high correlation between variables, and selecting significant explanatory variables for modeling may result in the problem of over-fitting. We constructed high deviance explained model considering multicollinearity using the Generalized Additive Model which is one of the machine learning methods. As a result of the Variation Inflation Factor Test, we selected and fitted the significant variable as temperature, precipitation, wind speed, wind direction, air pressure, dewpoint, hours of daylight and cloud cover. It was noted that the Hours of daylight, cloud cover and air pressure has high explained value in explonatory variable. The average coefficient of determination (R-Squared) of the Generalized Additive Model was 0.69. The constructed model can help to predict the influence on the external forces of electric pole, and contribute to the purpose of securing safety on utility pole.

PRELIMINARY FEASIBILITY STUDY OF THE SOLAR OBSERVATION PAYLOADS FOR STSAT-CLASS SATELLITES

  • Moon, Yong-Jae;Cho, Kyung-Seok;Jin, Ho;Chae, Jong-Chul;Lee, Sung-Ho;Seon, Kwang-Il;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.329-342
    • /
    • 2004
  • In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT) programs. The three candidates are (1) an UV imaging telescope, (2) an UV spectrograph, and (3) an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS) onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1) high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2) we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3) in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage satellite missions due to their poor pointing stabilities, and (4) there is no planned major mission after currently operating Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission. Finally, we present a preliminary design of a solar X-ray spectrometer covering soft X-ray (2 keV) to gamma ray (10 MeV).