• 제목/요약/키워드: Sensitizer

검색결과 165건 처리시간 0.022초

Transient Absorption Spectra of Phenothiazine Derivative in the Vesicle System Containing Ru$^{2+}$ Complex as a Sensitizer

  • Park, Yong-Tae;Kim, Young-Doo;Burkhart, Richard D.;Caldwell, Norris J.
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권2호
    • /
    • pp.84-87
    • /
    • 1988
  • The Photophysical and photochemical properties of Ruthenium bipyridine with two long hydrocarbon chains, $[Ru(bipy)_2(dhbipy)]^{2+}$ and transient phenothiazine derivative cation radical $(PTD^+)$ in the cationic vesicle were studied. Transient absorption spectra of cation radical of phenothiazine derivative in the vesicle system containing the $Ru^{2+}$ complex, $[Ru(bipy)_2(dhbipy)]^{2+}$, (1) as sensitizer and phenothiazine derivative as electron donor was observed by XeCl excimer laser photolysis system. Thus the excited ruthenium complex would be quenched by phenothiazine derivative(PTD) reductively in the vesicle system. The quenching rate constant($K_Q$) of $Ru^{2+}$ with two long hydrocarbon chains in the vesicle by PTD was $9.6{\times}10^8M^{-1}S^{-1}$. The absorption decay kinetics showed that lifetime of phenothiazine derivative cation radical is a value in the 4-8m sec range.

염료감응 태양전지를 위한 무금속 유기염료의 합성 (Synthesis of Metal-free Organic Dye for Dye-sensitized Solar Cell)

  • Pattarith, K.;Pungwiwat, N.;Laosooksathit, S.
    • 대한화학회지
    • /
    • 제55권2호
    • /
    • pp.279-282
    • /
    • 2011
  • 염료감을 태양전지(DSSC)는 대체에너지 집적제로서 낮은 생산단가로 고에너지 전환 효과를 볼 수 있다. 친환경적이며 효과가 큰 무금속 염료감응제의 개발이 중요하다. 본 연구에서 유기 감광제로 6,6'-(1,2,5-oxadiazole-3,4-diyl)dipyridine-2,4-dicarboxylic acid(3A)을 합성하였다. 이 감광제를 사용하여 광전환효율(${\eta}$)이 1.00%를 달성함을 발견하였다. 같은 조건에서 루테늄착물(N719)은 4.02%의 광전환효율을 나타내었다.

광증감제에 의한 Acrylonitrile의 광중합 속도 (I) (Kinetics of Pholopolymerization of Acrylonitrile Using Sensitizer)

  • 설수덕
    • Elastomers and Composites
    • /
    • 제34권1호
    • /
    • pp.3-10
    • /
    • 1999
  • 아크릴로니트릴(AN) 단일중합체를 항온장치가 부착된 광중합반응기내에서 합성하여 최적반응조건하에서 중합속도모델식을 구하였다. AN의 농도($1.8{\sim}7.58mo1/1$), 증감제의 종류($NaSCN,\;KSCN,\;Ba(SCN)_2,\;NH_4SCN,\;ZnCl_2,\;Na_2SeO_3$) 및 농도($10{\sim}60%$), 반응온도($10{\sim}70^{\circ}C$), 에너지 세기($1,000{\sim}9,900{\mu}J/cm^2$)를 변화시켰다. 광증감제의 농도에 관계없이 반응온도 $50^{\circ}C$, 반응시간 3시간에서 균일한 분자량분포를 얻고, 이중 광증감제로 50%의 NaSCN의 경우 다음과 같은 중합속도 모델식을 구하였다. $R_p=0.0142[M]^{0.82}[I]^{0.49}[S]^{0.52}$ exp(-1.33/RT).

  • PDF

산소 존재하에서 UVB에 의한 페플록사신의 광화학적 반응의 특성 (Characteristics of Photochemical Reaction of Pefloxacin Irradiated by UVB in an Aerobic Condition)

  • 최윤수;이경선
    • 약학회지
    • /
    • 제44권1호
    • /
    • pp.36-40
    • /
    • 2000
  • The photodegradation of pefloxacin, photolabile fluoroquinolone antibacterial agent, was studied. In the presence of $N_2$, photodegradation of pefloxacin was suppressed. The singlet oxygen and free radical generated in the reaction media proceeded photochemical reaction. The photodegradation of peflxacin was sensitized by benzophenone, a triplet state sensitizer.

  • PDF

Synthesis and Characterization of 2, 6-Di-(4'-Methyl Phenyl) Pyrylium Fluoroborate and Perchlorate in Single Step Salts Using 4'-Methyl Acetophenone

  • Wie, Jin-Hyeong;Hong, Young-Min;Kim, Hyun-Ook;Kim, Kyung-Hoon;Cho, Sung-Il
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.13-20
    • /
    • 2012
  • Due to its high conductivity, pyrylium has been frequently used in electron transfer reactions or in the synthesis of various organic materials. It has also been used as a sensor material. Traditionally, the compounds have been synthesized using various methods; mostly in a multiple steps. In this study, two pyrylium salts, 2, 6-di-(4'-methylphenyl) pyrylium fluoroborate and perchlorate were synthesized. The synthesis of these products was confirmed by 1H-NMR, LC/TOF-MS and FT-IR analyses while their photo-properties were analyzed using UV/VIS spectrophotometry. In addition, the electron transfer capacities of the salts were analyzed with a conductivity meter, it was found that their electron conductivities were high. When the synthesized compounds were dissolved in acetone, a green fluorescent material was observed to form. The fluorescent material can be used as a sensitizer in the electrical industry.

PAHs(Polynuclear Aromatic Hydrocarbons)에 오염된 토양 회복공정으로서 마이크로파의 적용성 검토연구 (Applicability on Microwave Technology to the Remediation of PAHs(Polynuclear Aromatic Hydrocarbons) Contaminated Soil)

  • 문경환;변자진;김덕찬
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.102-112
    • /
    • 1998
  • The fate of polynuclear aromatic hydrocarbons(PAMs) in soil has drawn increasing concern due to their toxic, carcinogenic, and mutagenic effects. These compounds have been most commonly carried into the soil in solvent, as in a coal tar or cresote. This study has been focused on the applicability of microwave treatment of soils contaminated by PAHs. Studies have been conducted with soil(particle diameter $150~500{\mu}m$), which was spiked with naphthalene, acenaphthene, fluorene, anthracene and pyrene, with different moisture contents. According to the results of the research, up to 95% removal efficiency of naphthalene was observed in 10% moisturized soil for five minutes microwave inducing And the removal efficiency of acenaphthene and fluorene were observed to be 88.9%, 67.2% in 30% moisturized soil, respectively. Due to the low vapor pressure, anthracene and pyrene showed the low removal efficiency. In case the powdered activated carbon was added to the soil as a sensitizer, anthracene and pyrene were decomposed into a various by-products. Decomposition rates of anthracene and pyrene were increased with incresing addition of a PAC to the soil. It is concluded that the developement of a microwave process to remediate soils contaminated with PAHs is foreseeable. But additional studies are also needed regarding continuous microwave heating process.

  • PDF

유기 태양전지 개발 동향 및 전망 (Development Trends and Perspectives of Organic Solar Cells)

  • 강문성;강용수
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.159-168
    • /
    • 2005
  • 염료감응 태양전지(dye-sensitized solar cells, DSCs)는 높은 광전효율과 값싼 제조비용의 매력을 가지고 있어 지난 10년간 활발히 연구되어왔다. 염료감응 태양전지의 에너지 전환은 광자를 흡수한 여기 상태 염료감응제의 나노결정 산화티타늄 반도체 전도대로의 전자 주입에 의해 발생된다. 이러한 염료감응 태양전지는 미래의 에너지 문제를 해결할 수 있는 유망한 청정재생 에너지원으로 기대된다. 본 총설에서는 염료감응 태양전지의 최근 개발 동향과 향후 전망에 대해 조사하였다.