• Title/Summary/Keyword: Sensitivity Equation

Search Result 480, Processing Time 0.026 seconds

A Solute Transport Analysis around Underground Storage Cavern by using Eigenvalue Numerical Technique (고유치 수치기법을 이용한 지하저장공동 주위의 용질이동해석)

  • Chung, Il-Moon;Kim, Ji-Tae;Cho, Won-Cheol;Kim, Nam-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.381-391
    • /
    • 2008
  • The eigenvalue technique is introduced to overcome the problem of truncation errors caused by temporal discretization of numerical analysis. The eigenvalue technique is different from simulation in that only the space is discretized. The spatially discretized equation is diagonized and the linear dynamic system is then decoupled. The time integration can be done independently and continuously for any nodal point at any time. The results of eigenvalue technique are compared with the exact solution and FEM numerical solution. The eigenvalue technique is more efficient than the FEM to the computation time and the computer storage in the same conditions. This technique is applied to the solute transport analysis in nonuniform flow fields around underground storage caverns. This method can be very useful for time consuming simulations. So, a sensitivity analysis is carried out by using this method to analyze the safety of caverns from nearly located contaminant sources. According to the simulations, the reaching time from source to the nearest cavern may takes 50 years with longitudinal dispersivity of 50 m and transversal dispersivity of 5 m, respectively.

Development of Simple Prediction Method for Injury Severity and Amount of Traumatic Hemorrhage via Analysis of the Correlation between Site of Pelvic Bone Fracture and Amount of Transfusion: Pelvic Bleeding Score (골반골절 환자의 골절위치와 출혈량간의 상관관계 분석을 통한 대량수혈 필요에 대한 간단한 예측도구 개발: 골반골 출혈 지수)

  • Lee, Sang Sik;Bae, Byung Kwan;Han, Sang Kyoon;Park, Sung Wook;Ryu, Ji Ho;Jeong, Jin Woo;Yeom, Seok Ran
    • Journal of Trauma and Injury
    • /
    • v.25 no.4
    • /
    • pp.139-144
    • /
    • 2012
  • Purpose: Hypovolemic shock is the leading cause of death in multiple trauma patients with pelvic bone fracures. The purpose of this study was to develop a simple prediction method for injury severity and amount of hemorrhage via an analysis of the correlation between the site of pelvic bone fracture and the amount of transfusion and to verify the usefulness of the such a simple scoring system. Methods: We analyzed retrospectively the medical records and radiologic examination of 102 patients who had been diagnosed as having a pelvic bone fracture and who had visited the Emergency Department between January 2007 and December 2011. Fracture sites in the pelvis were confirmed and re-classified anatomically as pubis, ilium or sacrum. A multiple linear regression analysis was performed on the amount of transfusion, and a simplified scoring system was developed. The predictive value of the amount of transfusion for the scoring system as verified by using the receiver operating characteristics (ROC). The area under the curve of the ROC was compared with the injury severity score (ISS). Results: From among the 102 patients, 97 patients (M:F=68:29, mean $age=46.7{\pm}16.6years$) were enrolled for analysis. The average ISS of the patients was $16.2{\pm}7.9$, and the average amount of packed RBC transfusion for 24 hr was $3.9{\pm}4.6units$. The regression equation resulting from the multiple linear regression analysis was 'packed RBC units=1.40${\times}$(sacrum fracture)+1.72${\times}$(pubis fracture)+1.67${\times}$(ilium fracture)+0.36' and was found to be suitable (p=0.005). We simplified the regression equation to 'Pelvic Bleeding Score=sacrum+pubis+ilium.' Each fractured site was scored as 0(no fracture) point, 1(right or left) point, or 2(both) points. Sacrum had only 0 or 1 point. The score ranged from 0 to 5. The area under the curve (AUC) of the ROC was 0.718 (95% CI: 0.588-0.848, p=0.009). For an upper Pelvis Bleeding Score of 3 points, the sensitivity of the prediction for a massive transfusion was 71.4%, and the specificity was 69.9%. Conclusion: We developed a simplified scoring system for the anatomical fracture sites in the pelvis to predict the requirement for a transfusion (Pelvis Bleeding Score (PBS)). The PBS, compared with the ISS, is considered a useful predictor of the need for a transfusion during initial management.

Level Set Based Shape Optimization of Linear Structures using Topological Derivatives (위상민감도를 이용한 선형구조물의 레벨셋 기반 형상 최적설계)

  • Yoon, Minho;Ha, Seung-Hyun;Kim, Min-Geun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • Using a level set method and topological derivatives, a topological shape optimization method that is independent of an initial design is developed for linearly elastic structures. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. The "Hamilton-Jacobi(H-J)" equation and computationally robust numerical technique of "up-wind scheme" lead the initial implicit boundary to an optimal one according to the normal velocity field while minimizing the objective function of compliance and satisfying the constraint of allowable volume. Based on the asymptotic regularization concept, the topological derivative is considered as the limit of shape derivative as the radius of hole approaches to zero. The required velocity field to update the H-J equation is determined from the descent direction of Lagrangian derived from optimality conditions. It turns out that the initial holes are not required to get the optimal result since the developed method can create holes whenever and wherever necessary using indicators obtained from the topological derivatives. It is demonstrated that the proper choice of control parameters for nucleation is crucial for efficient optimization process.

Development of FURA Code and Application for Load Follow Operation (FURA 코드 개발과 부하 추종 운전에 대한 적용)

  • Park, Young-Seob;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.88-104
    • /
    • 1988
  • The FUel Rod Analysis(FURA) code is developed using two-dimensional finite element methods for axisymmetric and plane stress analysis of fuel rod. It predicts the thermal and mechanical behavior of fuel rod during normal and load follow operations. To evaluate the exact temperature distribution and the inner gas pressure, the radial deformation of pellet and clad, the fission gas release are considered over the full-length of fuel rod. The thermal element equation is derived using Galerkin's techniques. The displacement element equation is derived using the principle of virtual works. The mechanical analysis can accommodate various components of strain: elastic, plastic, creep and thermal strain as well as strain due to swelling, relocation and densification. The 4-node quadratic isoparametric elements are adopted, and the geometric model is confined to a half-pellet-height region with the assumption that pellet-pellet interaction is symmetrical. The pellet cracking and crack healing, pellet-cladding interaction are modelled. The Newton-Raphson iteration with an implicit algorithm is applied to perform the analysis of non-linear material behavior accurately and stably. The pellet and cladding model has been compared with both analytical solutions and experimental results. The observed and predicted results are in good agreement. The general behavior of fuel rod is calculated by axisymmetric system and the cladding behavior against radial crack is used by plane stress system. The sensitivity of strain aging of PWR fuel cladding tube due to load following is evaluated in terms of linear power, load cycle frequency and amplitude.

  • PDF

Closing Analysis of Symmetric Steel Cable-stayed Bridges and Estimation of Construction Error (대칭형 강 사장교의 폐합해석과 시공오차의 예측)

  • Lee, Min Kwon;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.55-65
    • /
    • 2006
  • This paper presents the closing analysis of a symmetric steel cable-stayed bridge erected by a free cantilever method. Two independent structural systems are formed before the closing procedure of a bridge is performed, and thus the compatibility conditions for vertical displacement and rotational angle are not satisfied at the closing section without the application of proper sectional forces. Since, however, it is usually impossible to apply sectional forces at the closing section, the compatibility conditions should be satisfied by proper external forces that can be actually applicable to a bridge. Unstrained lengths of selected cables and the pull-up force of a derrick crane are adjusted to satisfy nonlinear compatibility conditions, which are solved iteratively by the Newton-Raphson method. Cable members are modeled by the elastic catenary cable elements, and towers and main girders are discretized by linear 3-D frame elements. The sensitivities of displacement with respect to the unstrained lengths of selected cables and the pull-up force of the derrick crane are evaluated by the direct differentiation of the equilibrium equation. A Monte-Carlo simulation approach is proposed to estimate expected construction errors for a given confidence level. The proposed method is applied to the second Jindo Grand Bridge to demonstrate its validity and effectiveness.

Study on Moye's Method for Analysis of Constant-Head Tests Conducted in Crystalline Rock (결정질 암반에서 Moye 방법을 이용한 정압시험의 해석에 대한 고찰)

  • Kyung-Woo Park;Byeong-Hak Park;Sung-Hoon Ji;Kang-Kun Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.519-530
    • /
    • 2023
  • Moye's analytical solution was examined as a method for constant-head tests under steady-state conditions, and results were compared with transient-state analyses in in situ hydraulic tests. The sensitivity of hydraulic conductivities calculated using Moye's method increased with the length of the test section, which should be as large as possible under test conditions. Particularly in low-permeability media with less than 10-8 m/sec of hydraulic conductivity, hydraulic conductivity is lower than that under transient-state conditions and can be recalculated by adjusting the boundary between radial and spherical flow assumed in Moye's equation. Constant-head tests performed in the research borehole at the KAERI Underground Research Tunnel (KURT) indicated that transmissivities derived from the constant-head withdrawal test under transient-state conditions in low-permeability media were higher than those derived from steady-state tests, likely because the groundwater flow boundary was smaller than the "half of the test-section length"assumed by Moye's equation. When interpreting constant-head test results for crystalline rock, the hydrogeological properties of the medium may be better understood by considering assumed conditions accompanying analysis of the steady-state condition and comparing them with results for the transient-state analysis, rather than simply assuming properties based on steady-state analyses.

Development Study of a Predictive Model for the Possibility of Collection Delinquent Health Insurance Contributions (체납된 건강보험료 징수 가능성 예측모형 개발 연구)

  • Young-Kyoon Na
    • Health Policy and Management
    • /
    • v.33 no.4
    • /
    • pp.450-456
    • /
    • 2023
  • Background: This study aims to develop a "Predictive Model for the Possibility of Collection Delinquent Health Insurance Contributions" for the National Health Insurance Service to enhance administrative efficiency in protecting and collecting contributions from livelihood-type defaulters. Additionally, it aims to establish customized collection management strategies based on individuals' ability to pay health insurance contributions. Methods: Firstly, to develop the "Predictive Model for the Possibility of Collection Delinquent Health Insurance Contributions," a series of processes including (1) analysis of defaulter characteristics, (2) model estimation and performance evaluation, and (3) model derivation will be conducted. Secondly, using the predictions from the model, individuals will be categorized into four types based on their payment ability and livelihood status, and collection strategies will be provided for each type. Results: Firstly, the regression equation of the prediction model is as follows: phat = exp (0.4729 + 0.0392 × gender + 0.00894 × age + 0.000563 × total income - 0.2849 × low-income type enrollee - 0.2271 × delinquency frequency + 0.9714 × delinquency action + 0.0851 × reduction) / [1 + exp (0.4729 + 0.0392 × gender + 0.00894 × age + 0.000563 × total income - 0.2849 × low-income type enrollee - 0.2271 × delinquency frequency + 0.9714 × delinquency action + 0.0851 × reduction)]. The prediction performance is an accuracy of 86.0%, sensitivity of 87.0%, and specificity of 84.8%. Secondly, individuals were categorized into four types based on livelihood status and payment ability. Particularly, the "support needed group," which comprises those with low payment ability and low-income type enrollee, suggests enhancing contribution relief and support policies. On the other hand, the "high-risk group," which comprises those without livelihood type and low payment ability, suggests implementing stricter default handling to improve collection rates. Conclusion: Upon examining the regression equation of the prediction model, it is evident that individuals with lower income levels and a history of past defaults have a lower probability of payment. This implies that defaults occur among those without the ability to bear the burden of health insurance contributions, leading to long-term defaults. Social insurance operates on the principles of mandatory participation and burden based on the ability to pay. Therefore, it is necessary to develop policies that consider individuals' ability to pay, such as transitioning livelihood-type defaulters to medical assistance or reducing insurance contribution burdens.

Model for Unplanned Self Extubation of ICU Patients Using System Dynamics Approach (시스템다이내믹스를 활용한 중환자실 환자의 비계획적 자가 발관 모델)

  • Song, Yu Gil;Yun, Eun Kyoung
    • Journal of Korean Academy of Nursing
    • /
    • v.45 no.2
    • /
    • pp.280-292
    • /
    • 2015
  • Purpose: In this study a system dynamics methodology was used to identify correlation and nonlinear feedback structure among factors affecting unplanned extubation (UE) of ICU patients and to construct and verify a simulation model. Methods: Factors affecting UE were identified through a theoretical background established by reviewing literature and preceding studies and referencing various statistical data. Related variables were decided through verification of content validity by an expert group. A causal loop diagram (CLD) was made based on the variables. Stock & Flow modeling using Vensim PLE Plus Version 6.0b was performed to establish a model for UE. Results: Based on the literature review and expert verification, 18 variables associated with UE were identified and CLD was prepared. From the prepared CLD, a model was developed by converting to the Stock & Flow Diagram. Results of the simulation showed that patient stress, patient in an agitated state, restraint application, patient movability, and individual intensive nursing were variables giving the greatest effect to UE probability. To verify agreement of the UE model with real situations, simulation with 5 cases was performed. Equation check and sensitivity analysis on TIME STEP were executed to validate model integrity. Conclusion: Results show that identification of a proper model enables prediction of UE probability. This prediction allows for adjustment of related factors, and provides basic data do develop nursing interventions to decrease UE.

The Multi-objective Optimal Design of Thermopile Sensor Having Beam or Membrane Structure (빔 혹은 멤버레인 구조를 가지는 써모파일 센서의 다목적 최적설계)

  • Lee, Jun-Bae;Kim, Tae-Yoon
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.6-15
    • /
    • 1997
  • This paper presents the multi-objective optimal design of thermopile sensor having beam or membrane structure. The thermopile sensor is composed of $Si_{3}N_{4}/SiO_{2}$ dielectric membrane, Al-polysilicon thermocouples and $RuO_{2}$ thin film for black body. The sensing method is based on the Seebeck effect which is originated from the temperature difference of the two positions, black body and silicon rim. The objective functions of the presented design are sensitivity, detectivity and thermal time constant. The modelling of the sensor is proposed including the package. The multi-objective optimization technique is applied to the design of the sensor not only inspecting the modelling equation but also simulating mathematical programming method. Especially, fuzzy optimization technique is adapted to get the optimal solution which enables the designer to reach the more practical solution. The design constraint of the voltage output originated from the change of the environmental temperature is included for practical use.

  • PDF

OPTICAL SENSITIVITY OF LASER FLUORESCENCE FOR INCIPIENT CARIES DETECTION (초기우식병소에 대한 레이저 fluorescence의 광학적 탐지감도)

  • Kim, Hyo-Suck;Kim, Wang-Kwen;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • The aim of this study was to evaluate the optical density of laser fluorescence for detection of incipient caries. Prepared and polished bovine enamel specimens were demineralized in a STPP solution for varying periods of time between 3 hrs. and 60 hrs. with an area of sound enamel retained on each specimen. The randomized specimens were analyzed for optical density of enamel demineralization using laser fluorescence. The specimens were sectioned and examined lesion depth by polarizing light microscope. Results were analyzed statistically with SAS program. The results from this study can be summarized as follows: 1. Optical density measured by laser fluorescence and lesion depth measured by polarizing light microscope was increased as demineralization time was increased(p<0.001). 2. Between optical density measured by laser fluorescence and lesion depth measured by polarizing light microscope was correlated highly(${\gamma}{\geq}0.74956$, p<0.001). 3. Regressive equation was obtained in this study as follows. Y=[X-0.260851]/0.000271(R-square:0.5618, p<0.001) (X:DENSITY, Y:DEPTH) In summary, optical density measured by laser fluorescence would be within the range of possibility to quantitatively presume demineralization amount of incipient caries lesion

  • PDF