• Title/Summary/Keyword: Sensing-rate

Search Result 724, Processing Time 0.031 seconds

On the Impact of Channel Sensing Methods to IEEE 802.15.4 Performances under IEEE 802.11b Interference

  • Shin, Soo-Young;Park, Hong-Seong
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.301-307
    • /
    • 2008
  • In this paper, the impact of channel sensing methods to IEEE 802.15.4 under the interference of IEEE 802.11b are analyzed. Two different channel sensing methods, energy detection and carrier sense, are considered. An average transmission delay, a throughput, and a power drain rate are used as performance measures. Those performance measures of IEEE 802.15.4 under the interference of IEEE 802.11b are analyzed mathematically. The simulation results are shown to validate the analytic results.

The Sensing Characteristics of $WO_3$ Thin Films for $NO_x$ Gas Detection with the Change of Deposition Methods (증착방법에 따른 $NO_x$가스 감지용 $WO_3$박막센서의 특성 변화 연구)

  • 김태송;김용범;유광수;성기숙;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.387-393
    • /
    • 1997
  • In order to apply WO3 thin films to the semiconducting NOx gas sensors as a sensing material, which have been expected to show good electrical properties, such as large sensitivity, rapid responsibility, and high selectivity, the fabrication method and their sensing characteristics were studied. The variations of surface morphologies, crystallographic orientations and crystallinity with the WO3 thin film growing methods thermal evaporation and DC sputtering methods were investigated by using scanning electron microscopy (SEM) and X-ray diffraction(XRD) analysis. As a result of sensitivity (Rgas/Rair) measurements for the 5 ppm NO2 test gas, the sensitivity values were 113 for the sputtered films and 93 for the evaporated films. It was also observed that the recovery rate of a sensing signal after measuring sensitivity was faster in the sputtered films than in the evaporated films.

  • PDF

A study on humidity sensing properties of oxide aluminum films by Anodic oxidation (양극산화법으로 제조한 산화 알루미늄 막의 감습특성 연구)

  • 전범진;전용우;이월인;소대화
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.113-117
    • /
    • 1994
  • In this paper, an experiment about humidity sensing properties of oxide aluminum films by Anodic oxidation method was made. The humidity sensing properties of films were investigated in the relative humidity range of 10∼85(%RH) , changing the frequency from 1[kHz] to 100[kHz]. The impedance of humidity sensing films were decreased in accordance with the increase of relative humidity. The decreasing rate of impedance were larger at low measuring frequency. The decreasing difference changes from 17.7M$\Omega$ to 3.68M$\Omega$ at low measuring frequency.

Fiber optic distribution temperature sensing in a borehole heat exchanger system (광섬유 센서를 이용한 지중 열교환기 시스템 온도 모니터링)

  • Shim, Byoung-Ohan;Lee, Young-Min;Kim, Hyoung-Chan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.451-454
    • /
    • 2006
  • Fiber optic distributed temperature sensing and thermal line sensor are applied in an observation borehole and a loom deep borehole heat exchanger. For the case of permanently installed system fiber optic DTS is very useful. By comparing with TLS, fiber optic DTS shows good accuracy and reliability. Ground water flow can give influences at heat exchange rate of the heat pump system. According to the hydraulic characteristics and temperature-depth profile, we consider that temperature-depth profile do not seem to be dependent on ground water flow. A permanent installation of fiber optic cable is expected as a reliable temperature measurement technique in a borehole heat exchanger system.

  • PDF

Rate Allocation for Block-based Compressive Sensing (블록기반 압축센싱을 위한 율 할당 방법)

  • Nguyen, Quang Hong;Dinh, Khanh Quoc;Nguyena, Viet Anh;Trinh, Chien Van;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.398-407
    • /
    • 2015
  • Compressive sensing (CS) has drawn much interest as a novel sampling technique that enables sparse signal to be sampled under the Nyquitst/Shannon rate. By noting that the block-based CS can still keep spatial correlation in measurement domain, this paper proposes to adapt sampling rate of each block in frame according to its characteristic defined by edge information. Specifically, those blocks containing more edges are assigned more measurements utilizing block-wise correlation in measurement domain without knowledge about full sampling frame. For natural image, the proposed adaptive rate allocation shows considerable improvement compared with fixed subrate block-based CS in both terms of objective (up to 3.29 dB gain) and subjective qualities.

Effect of Loading Rate on Self-stress Sensing Capacity of the Smart UHPC (하중 속도가 Smart UHPC의 자가 응력 감지 성능에 미치는 영향)

  • Lee, Seon Yeol;Kim, Min Kyoung;Kim, Dong Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.

Optimal Soft Decision for Cooperative Spectrum Sensing in Cognitive Radio Systems (무선 인지 시스템에서 협력 스펙트럼 센싱을 위한 최적화된 연판정 방식)

  • Lee, So-Young;Kim, Jin-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.423-429
    • /
    • 2011
  • Cooperative spectrum sensing is proposed to overcome some problem such as multipath fading and shadowing and to improve spectrum sensing performance. There are different combining methods for cooperative spectrum sensing: hard decision method and soft decision method. In this paper, we analysis the performance of cooperative spectrum sensing with distance based weight that is kind of a soft decision rule for cognitive radio(CR) systems and CR systems sense the spectrum of the licensed user by using a energy detection method. Threshold is determined in accordance with the constant false alarm rate(CFAR) algorithm for energy detection. The signal of licensed user is OFDM signal and the wireless channel between a licensed user and CR systems is modeled as Gaussian channel. From the simulation results, the cooperative spectrum sensing with distance based weight combining(DWC) and equal gain combing(EGC) methods shows higher spectrum sensing performance than single spectrum sensing does. And the detection probability performance with the DWC is higher than that with the EGC.

Dual Sensing with Voltage Shifting Scheme for High Sensitivity Touch Screen Detection (고감도 터치스크린 감지를 위한 양방향 센싱과 전압쉬프팅을 이용한 센싱 기법)

  • Seo, Incheol;Kim, HyungWon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.71-79
    • /
    • 2015
  • This paper proposes a new touch screen sensing method that improves the drawback of conventional single-line sensing methods for mutual capacitance touch screen panels (TSPs). It introduces a dual sensing and voltage shifting method, which reduces the ambient noise effectively and enhances the touch signal strength. The dual sensing scheme reduces the detection time by doubling the integration speed using both edges of excitation pulse signals. The voltage shifting method enhances the signal-to-noise ratio (SNR) by increasing the voltage range of integrations, and maximizing the ADC's input dynamic range. Simulation and experimental results using a commercial 23" large touch screen show an SNR performance of 43dB and a scan rate 2 times faster than conventional schemes - key properties suited for a large touch screen panels. We implemented the proposed method into a TSP controller chip using Magnachip's CMOS 0.18um process.

Research on Digital Complex-Correlator of Synthetic Aperture Radiometer: theory and simulation result

  • Jingye, Yan;Ji, Wu;Yunhua, Zhang;Jiang, Changhong;Tao, Wang;Jianhua, Ren;Jingshan, Jiang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.587-592
    • /
    • 2002
  • A new digital correlator fur an airborne synthetic aperture radiometer was designed in order to replace the conventional analog correlator unit which will become very complicated while the number of channels is increasing. The digital correlator uses digital IQ demodulator instead of the intermediate frequency (IF) phase shifter to make the correlation processing performed digitally at base band instead of analogly at IF. This technique has been applied to the digital receiver in softradio. The down-converted IF signals from each pair of receiver channels become low rate base-band digital signals after under-sampled, Digitally Down-Converted (DDC), decimated and filtered by FIR filters. The digital signals are further processed by two digital multipliers (complex correlation), the products are integrated by the integrators and finally the outputs from the integrators compose of the real part and the imaginary part of a sample of the visibility function. This design is tested by comparing the results from digital correlators and that from analog correlators. They are agreed with each other very well. Due to the fact that the digital correlators are realized with the help of Analog-Digital Converter (ADC) chips and the FPGA technology, the realized volume, mass, power consumption and complexity turned out to be greatly reduced compared with that of the analog correlators. Simulations show that the resolution of ADC has an influence on the synthesized antenna patterns, but this can be neglected if more than 2bit is used.

  • PDF

Broadband Spectrum Sensing of Distributed Modulated Wideband Converter Based on Markov Random Field

  • Li, Zhi;Zhu, Jiawei;Xu, Ziyong;Hua, Wei
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • The Distributed Modulated Wideband Converter (DMWC) is a networking system developed from the Modulated Wideband Converter, which converts all sampling channels into sensing nodes with number variables to implement signal undersampling. When the number of sparse subbands changes, the number of nodes can be adjusted flexibly to improve the reconstruction rate. Owing to the different attenuations of distributed nodes in different locations, it is worthwhile to find out how to select the optimal sensing node as the sampling channel. This paper proposes the spectrum sensing of DMWC based on a Markov random field (MRF) to select the ideal node, which is compared to the image edge segmentation. The attenuation of the candidate nodes is estimated based on the attenuation of the neighboring nodes that have participated in the DMWC system. Theoretical analysis and numerical simulations show that neighboring attenuation plays an important role in determining the node selection, and selecting the node using MRF can avoid serious transmission attenuation. Furthermore, DMWC can greatly improve recovery performance by using a Markov random field compared with random selection.