• Title/Summary/Keyword: Sensing technologies

Search Result 472, Processing Time 0.024 seconds

Utilization of Satellite Technologies for Agriculture

  • Ju-Kyung Yu;Jinhyun Ahn;Gyung Deok Han;Ho-Min Kang;Hyun Jo;Yong Suk Chung
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.547-552
    • /
    • 2024
  • Satellite technology has emerged as a powerful tool in modern agriculture, offering capabilities for Earth observation, land-use pattern analysis, crop productivity assessment, and natural disaster prevention. This mini-review provides a concise overview of the applications and benefits of satellite technologies in agriculture. It discusses how satellite imagery enables the monitoring of crop health, identification of land-use patterns, evaluation of crop productivity, and mitigation of natural disasters. Farmers and policymakers can make informed decisions to optimize agricultural practices, enhance food security, and promote sustainable agriculture by leveraging satellite data. Integrating satellite technology with other advancements, such as artificial intelligence and precision farming techniques, holds promise for further revolutionizing the agricultural sector. Overall, satellite technology has immense potential for improving agricultural efficiency, resilience, and sustainability in the face of evolving environmental challenges.

SAR Payload Technology for Next Generation Satellite (차세대 위성용 SAR 탑재체 기술)

  • Won, Young-Jin;Yoon, Jae-Cheol;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.131-141
    • /
    • 2014
  • Synthetic Aperture Radar (SAR) is a powerful and well established microwave remote sensing technique which enables high resolution measurements of the Earth surface independent of weather conditions and sunlight illumination. In this study, this paper first summarizes the basic SAR theory and the history of the SAR satellites. The second part of this paper gives an overview of new technologies for future SAR systems. New innovative concepts and technologies for SAR satellites will be digital beamforming, High Resolution Wide Swath (HRWS), Waveform Encoding, Terrain Observation by Progressive Scan (TOPS), and so on. These technologies will play an important role for future spaceborne SAR satellites.

Augmented-Reality Survey: from Concept to Application

  • Kim, Soo Kyun;Kang, Shin-Jin;Choi, Yoo-Joo;Choi, Min-Hyung;Hong, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.982-1004
    • /
    • 2017
  • The recent advances in the field of augmented reality (AR) have shown that the technology is a fundamental part of modern immersive interactive systems for the achievement of user engagement and a dynamic user experience. This survey paper presents the descriptions of a variety of the new AR explorations, and the issues that are relevant to the contemporary development of the fundamental technologies and applications are discussed. Most of the literature regarding the pertinent topics-taxonomy, the core tracking and sensing technologies, the hardware and software platforms, and the domain-specific applications-are then chronologically surveyed, and in varying detail, this is supplemented with the cited papers. This paper portrays the diversity of the research regarding the AR field together with an overview of the benefits and the limitations of the competing and complementary technologies.

When Sensor and Actuator Networks Cover the World

  • Stankovic, John A.
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.627-633
    • /
    • 2008
  • The technologies for wireless communication, sensing, and computation are each progressing at faster and faster rates. Notably, they are also being combined for an amazingly large multiplicative effect. It can be envisioned that the world will eventually be covered by networks of networks of smart sensors and actuators. This fact will give rise to revolutionary applications. However, to make this vision a reality, many research challenges must be overcome. This paper describes a representative set of new applications and identifies several key research challenges.

  • PDF

Telematics Terminal Platform Testbed Technologies for Open Platform Test

  • Hong Sang Gi;Lee Jun Wook;Choi Wan Sik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.375-378
    • /
    • 2004
  • In the telematics industry, the development of an open telematics terminal platform technology will be a great contribution to the telematics industry with an interoperability and adaptability of the telematics services. This paper proposes a terminal platform test process and a prototype of terminal platform testbed systems for an open telematics terminal platform test.

  • PDF

A Study on the Cutting Tool Fracture Monitoring in End Milling (End Mill 가공시 공구 파손 검출에 관한 연구)

  • 채명병;맹민재;정준기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.26-31
    • /
    • 1994
  • The analysis of acoustic emission signals generated during machining has been proposed as a technique for studying both the fundamentals of the cutting process and process and as a methodology for detecting tool fracture on line. In this study, AE signals detected during End Milling were applied as the experimental test to sensing tool fracture on the CNC vertical milling machine. Because automatic monitoring of the cutting condition is one of the most important technologies in machining, the in-process detection of cutting tool life including fracture has been investigated by performing experimental test.

  • PDF

Nanowires for bio-device (나노와이어를 이용한 바이오 소자 응용기술)

  • Choi, Heon Jin;Park, Jung Min
    • Vacuum Magazine
    • /
    • v.3 no.3
    • /
    • pp.4-9
    • /
    • 2016
  • Nanowires have excellent properties such as high crystallinity, good mechanical properties, quantum confinement effect and high chemical activity, and thus are promising building blocks for many applications. Here we firstly review the fabrication of nanowires by top-down and bottom-up process. We then review nanowires as building blocks for bio applications including bio sensing, cell signaling and cell stimulating. It shows that nanowires are promising for the development of advanced bio technologies that can address ultrahigh sensitivity, and long term cell signaling and stimulating without cell damages.

Technological Trend of Mid-infrared Optical Sensors (중적외선 광센서 기술동향)

  • Leem, Y.A.;Kwon, O.K.;Kim, K.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.41-49
    • /
    • 2018
  • Mid-infrared optical sensors have a number of compelling advantages for remote sensing and the simultaneous measurement of mixtures. However, they still have difficulties in accurate detection owing to signal interferences among a large number of molecular fingerprints in the mid-infrared band, which result in very slow commercialization. Higher sensitivity and higher selectivity are required to overcome this obstruction in measurement technology. In this paper, we review and analyze the trends of mid-infrared sensor technologies enhancing the sensitivity and selectivity.

Control Policy for the Land Remote Sensing Industry (미국(美國)의 지상원격탐사(地上遠隔探査) 통제제탁(統制制度))

  • Suh, Young-Duk
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.20 no.1
    • /
    • pp.87-107
    • /
    • 2005
  • Land Remote Sensing' is defined as the science (and to some extent, art) of acquiring information about the Earth's surface without actually being in contact with it. Narrowly speaking, this is done by sensing and recording reflected or emitted energy and processing, analyzing, and applying that information. Remote sensing technology was initially developed with certain purposes in mind ie. military and environmental observation. However, after 1970s, as these high-technologies were taught to private industries, remote sensing began to be more commercialized. Recently, we are witnessing a 0.61-meter high-resolution satellite image on a free market. While privatization of land remote sensing has enabled one to use this information for disaster prevention, map creation, resource exploration and more, it can also create serious threat to a sensed nation's national security, if such high resolution images fall into a hostile group ie. terrorists. The United States, a leading nation for land remote sensing technology, has been preparing and developing legislative control measures against the remote sensing industry, and has successfully created various policies to do so. Through the National Oceanic and Atmospheric Administration's authority under the Land Remote Sensing Policy Act, the US can restrict sensing and recording of resolution of 0.5 meter or better, and prohibit distributing/circulating any images for the first 24 hours. In 1994, Presidential Decision Directive 23 ordered a 'Shutter Control' policy that details heightened level of restriction from sensing to commercializing such sensitive data. The Directive 23 was even more strengthened in 2003 when the Congress passed US Commercial Remote Sensing Policy. These policies allow Secretary of Defense and Secretary of State to set up guidelines in authorizing land remote sensing, and to limit sensing and distributing satellite images in the name of the national security - US government can use the civilian remote sensing systems when needed for the national security purpose. The fact that the world's leading aerospace technology country acknowledged the magnitude of land remote sensing in the context of national security, and it has made and is making much effort to create necessary legislative measures to control the powerful technology gives much suggestions to our divided Korean peninsula. We, too, must continue working on the Korea National Space Development Act and laws to develop the necessary policies to ensure not only the development of space industry, but also to ensure the national security.

  • PDF