• Title/Summary/Keyword: Sensing plate

Search Result 119, Processing Time 0.025 seconds

Experimental assessment of the piezoelectric transverse d15 shear sensing mechanism

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.567-585
    • /
    • 2014
  • The piezoelectric transverse $d_{15}$ shear sensing mechanism is firstly assessed experimentally for a cantilever smart sandwich plate made of a piezoceramic axially poled patched core and glass fiber reinforced polymer composite faces. Different electrical connections are tested for the assessment of the sensor performance under a varying amplitude harmonic (at 24 Hz) force. Also, the dynamic response of the smart sandwich composite structure is monitored using different acquisition devices. The obtained experimentally sensed voltages are compared to those resulting from the benchmark three-dimensional piezoelectric coupled finite element simulations using a commercial code where realistic features, like equipotential conditions on the patches' electrodes and mechanical updating of the clamp, are considered. Numerically, it is found that the stiffness of the clamp, which is much softer than the ideal one, has an enormous influence on the sensed voltage of its adjacent patch; therefore, sensing with the patch on the free side would be more advantageous for a cantilever configuration. Apart from confirming the latter result, the plate benchmark experimental assessment showed that the parallel connection of its two oppositely poled patches has a moderate performance but better than the clamp side patch acting as an individual sensor.

On-line monitoring of microorganism cultivation processes using optical sensing membranes for simultaneous detection of dissolved oxygen and pH (용존산소와 pH의 동시 검출용 광학 센서 막을 이용한 미생물 발효공정의 온라인 모니터링)

  • Kim, Chun-Kwang;Rhee, Jong-II
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.106-112
    • /
    • 2009
  • An optical sensing membrane has been fabricated to measure the concentration of dissolved oxygen(DO) and pH value simultaneously. It has employed HPTS as a pH sensitive dye and a ruthenium(II) complex as a DO sensitive dye. The sensing membrane has been applied to wells in a 24-well microtiter plate. Using the 24-well microtiter plate the concentrations of dissolved oxygen and pH values have been on-line monitored during the cultivations of E.coli DH5${\alpha}$, B.cereus 318 and P.pastoris X-33. On-line monitoring of DO and pH in microorganism cultivation processes showed good performance of the sensing membrane containing 5 mM HPTS and 2 or 5 mg/mL Rudpp.

Design and Theoretic Analysis of 3D Tactile Sensor (3D 촉각 센서의 설계와 이론적인 해석)

  • Sim Kwee-Bo;Hwang Han-Kun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.870-874
    • /
    • 2005
  • This paper presents capacitive tactile sensor that can detect normal and shear forces. This tactile sensor consists of index plate, sensing plate, and elastic dielectric layer. The calculated sensing character is based on the changes of space between two horizontal plate. Larger overlap areas and narrow space between top and bottom plate guarantees higher sensitivity. Tactile sense information can be calculated from the changes of phase of output signal. The symmetric arrangement of sensing plates makes the manufacturing process easier and guarantees the stability of the structure. In this paper, the sensor structure is designed, the mechanism of the Proposed sensor is theoretically explained, and the simulated result is presented.

A Robust Resistive Fingerprint Sensor

  • Jung, Seung-Min
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.66-71
    • /
    • 2009
  • A novel sensing scheme using resistive characteristics of the finger is proposed. ESD problem is more harmful than a capacitive fingerprint sensor in a resistive fingerprint sensor, because the sensor plate is directly connected to the sensing cell. The proposed circuit is more robust than conventional circuit for ESD. The sensor plate and sensing cell are isolated by capacitor. The pixel level simple detection circuit is fully digital operation unlike that of the capacitive sensing cell. The sensor circuit blocks are designed and simulated in a standard CMOS $0.35{\mu}m$ process. The proposed circuit is more stable and effective than a typical circuit.

Large-size LCD with touch-sensing capability

  • Zhu, X.L.;Sit, Cass K.M.;Ma, Mark W.;Feng, Y.J.;Ng, K.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1519-1522
    • /
    • 2009
  • We describe a 32" liquid-crystal display (LCD) with multi-touch sensing capability by integrating IR detector arrays onto the LED backlight plate. A transparent light guide is placed in front of the display screen, with IR LEDs disposed at its edges and emitting IR light into the light guide, the light is trapped by total internal reflection within the light guide to be as touch-sensing light. A physical contact with the acrylic plate surface will stimulate some trapped light to be escaped from the light guide and pass through LCD panel to be detected by the IR detectors. The touch-sensing LCD with this configuration can locate simultaneous multiple touche points on the touchable surface.

  • PDF

A Study on the Automatic Sensing Device for Gas Leakage of Cooling Plate Using the Microprocessor System

  • Wang, Jee-Seok;Yoon, Hee-Jong;Kang, Ki-Seong;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.329-334
    • /
    • 2011
  • The cooling water circulation plates had been used to drop the temperature of refractory outside shell of common cooling system by using cooling plate or stave type. When they are attacked by surrounding gas, they are corroded and the water flows in the refractory due to leakage of water. So, the life of refractory material is shortened and changed due to the worse conditions of cooling system. The automatic sensing device for water leakage of cooling plate is developed to check the position of trouble by using the microprocessor system when cooling water leak and gas are flowed into the cooling plate through the leakage position. The flowed gas is detected in the micro-process system which delivers the detected position of cooling plate or stave to main control room through the wireless-radio relay station. This system can be possible to detect the position of cooling plate or stave against the water leakage part immediately and then deliver the signal to main control room by using the microprocessor system and wireless-radio relay station. This system will be developed in changing the working condition from manual system to unmanned auto alarm system.

Design of sensing element for 3-component load cell using parallel plate structure (병렬판구조를 이용한 3분력 로드셀 감지부의 설계)

  • Kim, Gap-Sun;Kang, Dae-Im;Jeong, Su-Yeon;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1871-1884
    • /
    • 1997
  • This paper describes the design process of a 3-component load cell with a multiple parallel plate structure which may be used to measure transverse forces and twisting moment simultaneously. Also we have derived equations to predict the bending strains on the surface of the beams in the multiple parallel plate structure under transverse force or twisting moment. It reveals that the bending strains calculated from the derived equations are in good agreement with the results from finite element analysis and experiment. Also we have evaluated the rated output and interference error of each component, which can be efficiently used to design a 3-component load cell with a multiple parallel plate structure.

AE센서와 감지판을 이용한 칩 형태 감지에관한 연구

  • 윤재웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.300-304
    • /
    • 1993
  • Chip formation control is an important problem in the automation of manufacturing process, since the continuous chip can cause catastrophic failures of the tooling and entangle the workpiece causing damage. However, it is impossible to predict chip form correctly due to the complex nature of cutting process. In order to detect the chip form for unmanned manufacturing, a new identification method is proposed. The feasibility of using acoustic emission signals from the sensing plate for identification of chip form is investigated. Experiments were conducted under the various cutting conditions. When the acoustic emission sensor is attached to the sensing plate, it turns out that the moving averaged AE signals correlated well with the collision of segmented chips with the plate. The sensitivity of moving averaged AE signals to chip congestions due to continuous chip formation is illustrated as well.

Spaceborne Gravity Sensors for Continental Hydrology and Geodynamic Studies

  • Shum C. K.;Han Shin-Chan;Braun Alexander
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.51-57
    • /
    • 2005
  • The currently operating NASA/GFZ Gravity Recovery and Climate Experiment (GRACE) mission is designed to measure small mass changes over a large spatial scale, including the mapping of continental water storage changes and other geophysical signals in the form of monthly temporal gravity field. The European Space Agency's Gravity field and steady state Ocean Circulation Explorer (GOCE) space gravity gradiometer (SGG) mission is anticipated to determine the mean Earth gravity field with an unprecedented geoid accuracy of several cm (rms) with wavelength of 130km or longer. In this paper, we present a summary of present GRACE studies for the recovery of hydrological signals in the Amazon basin using alternative processing and filtering techniques, and local inversion to enhance the temporal and spatial resolutions by two-folds or better. Simulation studies for the potential GRACE detection of slow deformations due to Nazca-South America plate convergence and glacial isostatic adjustment (GIA) signals show that these signals are at present difficult to detect without long-term data averaging and further improvement of GRACE measurement accuracy.

Self Displacement Sensing (SDS) Nano Stage

  • Choi, Soo-Chang;Park, Jeong-Woo;Kim, Yong-Woo;Lee, Deug-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.70-74
    • /
    • 2007
  • This paper describes the development of a nano-positioning system for nanoscale science and engineering. Conventional positioning systems, which can be expensive and complicated, require the use of laser interferometers or capacitive transducers to measure nanoscale displacements of the stage. In this study, a new self-displacement sensing (SDS) nano-stage was developed using mechanical magnification of its displacement signal. The SDS nano-stage measured the displacement of its movement using a position-sensitive photodiode (PSPD), a laser source, and a hinge-connected rotating mirror plate. A beam from a laser diode was focused onto the middle of the plate with the rotating mirror. The position variation of the reflected beam from the mirror rotation was then monitored by the PSPD. Finally, the PSPD measured the amplified displacement as opposed to the actual movement of the stage via an optical lever mechanism, providing the ability to more precisely control the nanoscale stage. The displacement amplification process was modeled by structural analysis. The simulation results of the amplification ratio showed that the distance variation between the PSPD and the mirror plate as well as the length L of the mirror plate could be used as the basic design parameters for a SDS nano-stage. The PSPD was originally designed for a total travel range of 30 to 60 mm, and the SDS nano-stage amplified that range by a factor of 15 to 25. Based on these results, a SDS nano-stage was fabricated using principle of displacement amplification.