• 제목/요약/키워드: Sensing and Application

Search Result 1,526, Processing Time 0.047 seconds

Magnetic Sensors and Actuators

  • Pasquale, M.
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.60-69
    • /
    • 2003
  • A review of mechanical sensing techniques based on magnetic methods is presented, with special reference to magnetoelastic strain gauges and force sensors. A novel strain sensor based on soft amorphous ribbons is described. Other types of magnetic sensors, for the measurement of torque and displacement are briefly discussed. An overview of magnetic actuators based on giant magnetostrictive materials, with some practical examples, is presented. Recent advances in the development and application of magnetic shape memory materials are discussed, together with the analysis of recent studies for the description of magnetic shape memory phenomena.

Design of Memory-Resident GIS Database Systems

  • Lee, J. H.;Nam, K.W.;Lee, S.H.;Park, J.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.499-501
    • /
    • 2003
  • As semiconductor memory becomes cheaper, the memory capacity of computer system is increasing. Therefore computer system has sufficient memory for a plentiful spatial data. With emerging spatial application required high performance, this paper presents a GIS database system in main memory. Memory residence can provide both functionality and performance for a database management system. This paper describes design of DBMS for storing, querying, managing and analyzing for spatial and non-spatial data in main-memory. This memory resident GIS DBMS supports SQL for spatial query, spatial data model, spatial index and interface for GIS tool or applications.

  • PDF

A Study on Lightweight CNN-based Interpolation Method for Satellite Images (위성 영상을 위한 경량화된 CNN 기반의 보간 기술 연구)

  • Kim, Hyun-ho;Seo, Doochun;Jung, JaeHeon;Kim, Yongwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.167-177
    • /
    • 2022
  • In order to obtain satellite image products using the image transmitted to the ground station after capturing the satellite images, many image pre/post-processing steps are involved. During the pre/post-processing, when converting from level 1R images to level 1G images, geometric correction is essential. An interpolation method necessary for geometric correction is inevitably used, and the quality of the level 1G images is determined according to the accuracy of the interpolation method. Also, it is crucial to speed up the interpolation algorithm by the level processor. In this paper, we proposed a lightweight CNN-based interpolation method required for geometric correction when converting from level 1R to level 1G. The proposed method doubles the resolution of satellite images and constructs a deep learning network with a lightweight deep convolutional neural network for fast processing speed. In addition, a feature map fusion method capable of improving the image quality of multispectral (MS) bands using panchromatic (PAN) band information was proposed. The images obtained through the proposed interpolation method improved by about 0.4 dB for the PAN image and about 4.9 dB for the MS image in the quantitative peak signal-to-noise ratio (PSNR) index compared to the existing deep learning-based interpolation methods. In addition, it was confirmed that the time required to acquire an image that is twice the resolution of the 36,500×36,500 input image based on the PAN image size is improved by about 1.6 times compared to the existing deep learning-based interpolation method.

The resolution recovery - Application to various CT systems

  • Kim, Hong-Suk;Lee, Soo-Young
    • Proceedings of the KIEE Conference
    • /
    • 1979.08a
    • /
    • pp.160-161
    • /
    • 1979
  • The degradation of image due to the finite size of sensing device has been one of the problems to all of the digital imaging systems. The improvement of the spatial resolution has been attempted by "differential method" with fixed sensor size and finer sampling. The computer simulations were carried out for the cases of PLF system (Parallel Linear Fan-beam) and SR(Stationary Ring) system and the results are presented.

  • PDF

A Development of Measurement System for Diathesis-Diagnosis (체질 진단용 센서 시스템의 구현)

  • 정용래;김승우
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.117-120
    • /
    • 2002
  • This paper is to develop the sensing system for opening-force measurement such as O-Ring muscular meridian. We designed to overcome the functional limit that the conventional force-sensor can measure just the closing-force. Therefore, the new sensor can meet a variety of application as well as O-Ring test. The structure of the new sensor is an actuator-type system using an electromagnet. That is made up of mechanical system, electromagnet, current transformer and computer interface circuit. Driving software and user interface program of the new sensor system also is explained in this paper.

  • PDF

surface acoustic wave oscillator hymidity sensor using hexafluoropropene plasma thin film (헥사플루오르프로펜 플라즈마박막을 이용한 표면탄성파발진기 습도센서)

  • 박남천;서은덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.144-146
    • /
    • 1992
  • Surface acoustic wave(SAW) oscillator offers many attractive features for application to vapor sensors. The perturbation of SAW velocity by the hexafluoropropence plasma polymer thin film has been studied for relative humidity sensing. adsorption of moisture produces rapid aid changes in the properties of the film, resulting in a change in the velocity of surface acoustic waves and, hence, in the frequency of one SAW oscillator. The device used in our experiments have 55 MHZ SAW oscillator fabricated on a LiNbO substrate.

  • PDF

Research on the Variable Rate Spraying System Based on Canopy Volume Measurement

  • Hu, Kaiqun;Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1131-1140
    • /
    • 2019
  • Characteristics of fruit tree canopies are important target information for adjusting the pesticide application rate in variable rate spraying in orchards. Therefore, the target detection of the canopy characteristics is very important. In this study, a canopy volume measurement method for peach trees was presented and a variable rate spraying system based on canopy volume measurement was developed using the ultrasonic sensing, one of the most effective target detection method. Ten ultrasonic sensors and two flow control units were mounted on the orchard air-assisted sprayer. The ultrasonic sensors were used to detect the canopy diameters and the flow controls were used to modify the flow rate of the nozzles in real time. Two treatments were established: a constant application rate of $300Lha^{-1}$ was set as the control treatment for the comparison with the variable rate application at a $0.095Lm^{-3}$ canopy. The tracer deposition at different parts of peach trees and the tracer losses to the ground (between rows and within rows) were analyzed in detail under constant rate and variable rate application. The results showed that there were no significant differences between two treatments in the liquid distribution and the capability to reach the inner parts of the crop canopies.

3D Terrain Analysis and Modeling for Double-Tract Railway Route Selection Using Geo-Spatial Information (공간정보를 이용한 복선 철도노선 선정에서의 3차원 지형분석 및 모델링)

  • Lee Young-Wook;Yeon Sang-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.248-254
    • /
    • 2005
  • Recently remote sensing technology is applied for construction planning and design areas by use of remote sensed satellite images according to engineering application technology in the various experimental tasks. In this study, it was applied for 3 dimensional terrain analysis and basic design by comparing with present railway and newly expanded double-tract railway route of forest sites on the new construction site of 15km at national railway lines, and then showed 3-D perspective images and fly simulation images to examine possibility of various application as terrain analysis modeling and running simulation at the corresponding course. As a result of its application, it gained the results not only improvement of present methods but also real various application possibilities.

  • PDF

Application of Geospatial Information for Route Selection of New Double Track Railway (신규 복선철도 노선선정을 위한 지형공간정보의 적용)

  • Yeon Sang-Ho;Lee Jin-Duck
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.475-481
    • /
    • 2005
  • Recently remote sensing technology is applied for construction projects planning and design areas by use of remote sensed satellite images according to engineering application technology in the various experimental tasks. In this study, It was applied for 3 dimensional terrain analysis and basic design by comparing to present railway and new expand doble-tract railway route of forest sites on the new construction site of 15km at national railway lines, and then showed 3-D perspective images and fly simulation images to possibility for various application as terrain analysis modeling and running simulation at the course. As a results of its applied, It gained the results not only improvement of present methods but also real various application possibilities.

  • PDF