
Design of Memory-Resident GIS Database Systems

J. H. Lee
ETRI

161, Kajeongdong, Yuseonggu, Daejeon, Korea, 305-350
snoopy@etri.re.kr

K. W. Nam

ETRI
161, Kajeongdong, Yuseonggu, Daejeon, Korea, 305-350

kwnam@etri.re.kr

S. H. Lee
ETRI

161, Kajeongdong, Yuseonggu, Daejeon, Korea, 305-350
sholee@etri.re.kr

J. H. Park

ETRI
161, Kajeongdong, Yuseonggu, Daejeon, Korea, 305-350

jhp@etri.re.kr

Abstract: As semiconductor memory becomes cheaper, the
memory capacity of computer system is increasing. Therefore
computer system has sufficient memory for a plentiful spatial
data. With emerging spatial application required high perform-
ance, this paper presents a GIS database system in main mem-
ory. Memory residence can provide both functionality and
performance for a database management system.
This paper describes design of DBMS for storing, querying,
managing and analyzing for spatial and non-spatial data in
main-memory. This memory resident GIS DBMS supports
SQL for spatial query, spatial data model, spatial index and
interface for GIS tool or applications.
Keywords: MMDB, GIS.

1. Introduction

Recently, new applications using spatial data such as
location based services(LBS) or intelligent transportation
system(ITS) require real-time access to database as well
as spatial operation. For example, if we provide location
and path of restaurant to a man who look for restaurant
so as to eat lunch, we need to continuously update cur-
rent location of man through wireless networks and are
required operation of finding path in order to provide
path for him. As before, high-performance access to data
is necessary so as to providing frequent update opera-
tions and spatial operations simultaneously. And the in-
creasing availability of large and relatively cheap me m-
ory suggests that spatial database could reside entirely or
almost entirely in main memory. So, in this paper, we
propose the GISDB.MM, which is main memory based
spatial database system, for high-performance access and
manage to spatial data.
 The outline of the paper is as follows. Section 2 re-
views past works for main memory DBMS and spatial

DBMS. Section 3 presents the architecture of
GISDB.MM. Section 4 describes spatial data model.
Section 5 describes method of storing variable length
spatial data. Finally, section 6 summarizes the paper with
future work.

2. Related Work

We briefly describe difference of between main
memory database system and conventional database
system (DRDB) it is disk resident [1]. Disks have a
high, fixed cost per access that does not depend on the
amount of data that is retrieved during the access. For
this reason, disks are block-oriented storage devices.
Main memory is not. The layout of data on a disk is
much more critical than layout of data in main mem-
ory, since sequential access to a disk is faster than ran-
dom access. Sequential access is not as important in
main memories. Main memory is normally directly ac-
cessibly by the processor. With steadily increasing
availability and cheap memory, MMDB have been de-
signed or implemented in consideration of memory
properties. Therefore, many research results come out
in order to improve performance, such as index, cur-
rency control, recovery and so on.

Many researches study spatial database system and
we can use many commercial spatial database systems
for example Oracle Spatial, ESRI ArcSDE, DB2 Spa-
tial Extender, Zeus, Informix Spatial database,
GeoToolKit. However, most of them are based on the
traditional disk-based database architecture. A high-
performance spatial storage system based on the main-
memory database system architecture appeared like
Xmas-SX[2]. Xmas-SX is a spatial extension of an ex-
tensible main -memory storage system named Xmas[3]
and provide spatial data type following the OpenGIS

geometry model[6,7], spatial operators, spatial indexes
and client programming interfaces.

3. GISDB.MM Architecture

Fig. 1 shows the overall architecture of the

GISDB.MM that is designed in consideration of extend-
ing to treat moving objects. And GISDB.MM server
process is multi-threaded to run multiple transactions
concurrently. The functions of each module are as fol-
lows.

1) User interface module

The GISDB.MM provides a few of standard interfaces

such as ODBC, JDBC, CLI. Specially, it provides data
provider following Open GIS OLE/COM standard.
Therefore variable applications access it through same
standard interfaces.

2) Query processing module

The Query processing module process SQL and take

OpenGIS Simple Feature Specification for SQL[7]. The
Query processing module consists of Query Dispatcher,
Parser, Query Analyzer, Execution Planner, Query
Optimizer and Catalog Manager.

The Query Dispatcher accepts connection and query
from user and sends other module in order to processing
query.

The Parser creates a parse tree after perform semantic
and syntax analysis about accepted query language.

The Query Analyzer analyzes the parse tree created by
the parser module, confirms catalog information about
each query elements and judges to go on query process-
ing by confirming consistency.

User Interface Module

ODBC JDBC

CL I OLE/DB Da ta P rov ide r

Query Processing Module

Execu t i on P l ane r Ca t a l og Manage r

P a r s e r Que ry Opt im ize r Que ry Ana l yze r

Storage Interface Module

GIS /MO Ope ra t i on Executab le Act ion

Storage Manager Module

G IS /MO I nde x

Recove r y Manage r L o c k M a n a g e r

Memo r y Manage r T r ansac t i on Manage r

Dead Lock De tec to r

Q ue r y D i spa tche r

Fig. 1. GISDB.MM Architecture.

The Execution planner alters each query elements into
procedures that the storage manager can execute and
makes a decision execution order of procedures.

The Query Optimizer makes an optimized execution
path. It selects a path by selection standard such as cost-
based or heuristic.
 The Catalog manager manages metadata of database
object (ex. table, index, restriction) in database.

3) Storage interface module

 The storage interface module has the GIS/MO opera-
tion module and the Execution Action module.
 The GIS/MO operation module defines spatial operator
about spatial data type and provides interface called by
query processing module. Now we handle spatial opera-
tor about spatial object, but later we will add spatio-
temporal operator about moving object. We will deal
with spatial object model and operator in next section.
 The Executable action creates jobs of action unit that
executed in storage manager module.

3) Storage manager module

The Storage manager module consists of the GIS/MO
index, the Memory manager, the Transaction manager,
the Recovery manager, the Lock manager, and Dead
lock detector.
 The GIS/MO index deals with spatial index and later
will be added spatio-temporal index. We implement R*-
tree spatial index. The R*-tree is adjusted according to
main memory environment. The index about non-spatial
data is applied T-tree index and ECBH(Enhanced
Chained Bucket Hashing).
 The Memory manager manages physical memory and
map to it.
 The Transaction manager deals with processing and
manager transaction.

The Recovery manager recovers from system error
and guarantees data consistency.

The Lock manager is concurrency control module.
The function of this module is concurrency control be-
tween tables or records in multi transaction environment.
We apply 2-Phase Locking protocol.

The Dead lock Detector determines whether the sys-
tem has entered a deadlock state and recovers from it.

4. Data Model

The GISDB.MM take OpenGIS geometry model in
order to express the general spatial objects. Fig 2 shows
spatial object type of GISDB.MM following OpenGIS
geometry model.
 The GISDB.MM defined abstract class such as Spa-
tialRelation, SpatialOperator and WKS.

The SpatialRelation class provides the methods for
spatial relation operation such as Contains, Crosses, Dis-
joint, Equals, Intersects, Overlaps, Touches and Within.

Spa t i a l Re l a t i o n

C o n t a i n s ()

C r o s s e s ()

I n t e r s ec t s ()

…

S p a t i a l O p e r a t o r

Bu f f e r ()

D i s t a n c e ()

I n t e r s e c ti on ()

…

W K S

E x p o r t T o W K B ()

E x p o r t T o W K T ()

I m p o r t F r o m W K B ()

…

G e o m e t r y

D i m e n t i o n ()

I s E m p t y ()

E m v e l o p e ()

…

Po i n t

X

Y

L i neS t r i n

P o i r n t s []

L e n g t h ()

…

P o l y g o n

R i n g s []

E x t e r i o r R i ng ()

…

Mu l t i P o l y gon

P o l y g o n s []

A r e a ()

…

M u l t i L i n e S t r i n g

P o i r n t s []

L e n g t h ()

…

M u l t i P o i n t

P o i r n t s []

L e n g t h ()

…

Fig. 2. Spatial object model

The SpatialOperator class is made of spatial operators.
There are Buffer, convexHull, Difference, Distance, In-
tersection, Symdifference and Union.

The WKS deal with well-known expression of spatial
objects. Methods of WKS class have methods such as
ExportToWKB, ExportToWKT, ImportFromWKB, and
ImportFromWKT.

Those surrounded by bold line such as Point, Line-
String, Polygon represents concrete types, which can be
instantiated. We abbreviate description of spatial object
because it follows OpenGIS geometry model.

6. Spatial Data Management

Generally, spatial data is variable-length. So the efficient
handling of variable -length data is needed. Fig 3 shows
how to store spatial object in GISDB.MM. Tables of
database are made of fixed-length records, and records
consist of fixed-length fields. Because length of field
stored spatial objects is fixed, in case a field does not
accommodate spatial object, we will store it in
BLOB(binary large object) form at continuous memory
space.

Serialized Polygon Object Snoopy 1

AREA NAME ID

v I f (the s ize of geomet ry ob ject <= max imum f ie ld length)

Table Schema

Create Table person (id int, name char(20), area polygon);

 Snoopy 1

AREA NAME ID

Serialized Polygon Object

v I f (the s i ze o f geomet ry ob jec t > max imum f ie ld length)

v BLOB s to rage

Fig. 3. Storage structure of spatial objects

6. Summary and Future Work

We designed high-performance spatial database sys-

tem based main memory. We took consideration into
extending to treat moving objects and are implementing
this system. After we implement, we have to work about
index, concurrency control and storage management of
moving object in main memory environment.

References

[1] A Hector Garcia -Molina, Kenneth Salem: Main Memory

Database Systems: An Overview. TKDE 4(6): 509-516
(1992)

[2] J.H. Park, K. Kim, S. K Cha, M.S. Song, S. Lee, and J.
Lee, “A High-performance Spatial Storage System Based
on Main-Memory Database Architecture ”, In Proceedings
of DEXA Conference, 1999

[3] J. H. Park, Y. Sik Kwon, K. Kim, S. Lee, B. D. Park, and
S. K. Cha, “Xmas: An Extensible Main -memroy Storage
System for High-Performance Applications”, In Proceed-
ings of ACM SIGMOD Conference, 1998.

[4] H. V. Jagadish, D. Lieuwen, R. Rastogi, and A. Silber-
schartz, “Daili: A High Performance Main Memory Stor-
age Manager”, In Proceedings of VLDB Conference,
1998

[5] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider,
Bernhard Seeger: The R* -Tree: An Efficient and Robust
Access Method for Points and Rectangles. SIGMOD
Conference 1990: 322-331

[6] OpenGIS Implementaion Specifications : OpenGIS Sim-
ple Features Specification For OLE/COM Revision 1.1,
OpenGIS Consortium, Inc. 1999

[7] OpenGIS Implementaion Specifications : OpenGIS®
Simple Features Specification for SQL Revision 1.1,
OpenGIS Consortium, Inc. 1999

	Return to previous screen
	Design of Memory-Resident GIS Database Systems

