• Title/Summary/Keyword: Sensing Reliability

Search Result 319, Processing Time 0.025 seconds

A Study on the Impact Sensing Device for Improving the Firing Function Reliability of ESAF (ESAF의 기폭 신뢰성 향상을 위한 충격감지장치 연구)

  • Jo, Seyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.525-531
    • /
    • 2015
  • In this paper, a novel impact sensing device for an ESAF(Electronic Safe and Arming Fuze) is presented. An impact sensing device is mounted in front of a weapon, and it detects an impact when it crashes against a target. There are two main design requirements to enhance the firing functional reliability of the ESAF; an operational reliability and a reduced latency, which is a delay time needed for sensing the impact. The design method of the contact-type impact sensing device, which employs an FPCB(Flexible Printed Circuit Board) so it can be used other weapons, is proposed. The tests demonstrated that the design described in this work show a reduced delay time with ensuring the operational reliability.

Reliability and Validity of a Force-Sensing Resistor for the Measurement of Static Hindlimb Weight Distribution in Beagle Dogs

  • Heo, Su-Young;Jeong, Heejun;Jeong, Jaemin;Jeong, Seong Mok;Lee, HaeBeom
    • Journal of Veterinary Clinics
    • /
    • v.35 no.5
    • /
    • pp.206-210
    • /
    • 2018
  • The purpose of this study was to evaluate the reliability and validity of the Force-Sensing Resistor (FSR) for measurement of static hindlimb weight distribution in beagle dogs and to compare these results to a Digital Weighing Scale (DWS). Nine healthy beagle dogs were recruited for this study. Static weight distribution was evaluated four times at intervals of 5 days with each device and two observers to calculate the intra- and interobserver reliability. The intraclass correlation coefficient (ICC) values of the FSR for intraobserver reliability were moderate to good (0.74). The results for the DWS showed poor to moderate (0.56) ICC values for intraobserver reliability. The ICC values for interobserver reliability were 0.53 and 0.61 for FSR and DWS, respectively, indicating poor to moderate agreement. Our findings suggest that the Force-Sensing Resistor can be used to measure static weight distribution in veterinary medicine. However, caution should be taken when comparing measured values of static weight distribution obtained utilizing both the FSR and DWS due to their low positive correlation (R = 0.41, p < 0.01).

An Empirical Evaluation of Stone-shaped Physiological Sensing Interface (돌 형태의 휴대용 생체신호 측정 인터페이스의 경험적인 평가 및 분석)

  • Choi, Ah-Young;Woo, Woon-Tack
    • Journal of the HCI Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Recently researchers have studied mobile physiological sensing device. However, previous works focused on multiple and real time physiological sensing method, instead of aesthetic shape of sensing devices, sensing comfort during monitoring and sensing reliability against the hand motion artifact. In this work, we propose a stone shaped physiological sensing device to monitor the physiological status in a daily life which maximize the aesthetic feeling and sensing comfort and sensing reliability. We proposed stepwise user centered design process for user centric physiological sensing device and evaluated appropriate sensing positions against the hand motion artifacts and pressure from sensors. From the usability test and experiments, we verified the proposed sensing device provides the aesthetic appeals, sensing comfort and sensing reliability. We expect that this work can be applied in the various health care applications in near future.

  • PDF

Reliability Model for Distributed Remote Sensing Application

  • Achalakul, Tiranee;Wattanapongsakorn, Naruemon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.293-296
    • /
    • 2002
  • This paper discusses a software reliability model for the distributed s-PCT algorithm fur remote sensing applications. The distributed algorithm is designed based on a Manager-Worker threading concept and goes further to use redundancy to achieve fault tolerance. The paper provides a status report on our progress in developing the reliability concept and applying it to create a model for the distributed s-PCT In particular, we are interested ill the algorithm performance versus reliability.

  • PDF

An Efficient Method for Improving the Reliability of Sensing Data Using Multi-sensors in Wireless Sensor Network Systems (다중센서를 이용한 무선센서네트워크시스템에서의 효율적인 측정데이터 신뢰성 향상 방법)

  • Lee, Sang-Shin;Song, Min-Hwan;Won, Kwang-Ho;Kim, Joong-Hwan
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.3
    • /
    • pp.116-121
    • /
    • 2009
  • A novel method for improving the reliability of sensing data using multi-sensors in wireless sensor network systems is presented in this paper. This method is successfully applied a fog monitoring system in the mountain area.

  • PDF

Measuring System for Evaluating Sensing Reliability of Infrared Temperature Sensors

  • 박준혁;이민철;부광석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.169-173
    • /
    • 1997
  • In this paper, auto measuring system for evaluating sensing reliability of infrared temperature sensors is developed. A developed system is composed of temperature controller, measuring sysytem and operating S/W. A constant temperature control of a chamber is accomplished by multi-heater using PI control. It is shown that the control resulte of temperature are well followed to the desired temperature value. The developed untegrated measuring system will increase reliability and productivity of products.

L.E.O. Satellite Power Subsystem Reliability Analysis

  • Zahran M.;Tawfik S.;Dyakov Gennady
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.104-113
    • /
    • 2006
  • Satellites have provided the impetus for the orderly development of reliability engineering research and analysis because they tend to have complex systems and hence acute problems. They were instrumental in developing mathematical models for reliability, as well as design techniques to permit quantitative specification, prediction and measurement of reliability. Reliability engineering is based on implementing measures which insure an item will perform its mission successfully. The discipline of reliability engineering consists of two fundamental aspects; $(1^{st})$ paying attention to details, and $(2^{nd})$ handling uncertainties. This paper uses some of the basic concepts, formulas and examples of reliability theory in application. This paper emphasizes the practical reliability analysis of a Low Earth Orbit (LEO) Micro-satellite power subsystem. Approaches for specifying and allocating the reliability of each element of the power system so as to meet the overall power system reliability requirements, as well as to give detailed modeling and predicting of equipment/system reliability are introduced. The results are handled and analyzed to form the final reliability results for the satellite power system. The results show that the Electric Power Subsystem (EPS) reliability meets the requirements with quad microcontrollers (MC), two boards working as main and cold redundant while each board contains two MCs in a hot redundant.

A New Sensing and Writing Scheme for MRAM (MRAM을 위한 새로운 데이터 감지 기법과 writing 기법)

  • 고주현;조충현;김대정;민경식;김동명
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.815-818
    • /
    • 2003
  • New sensing and writing schemes for a magneto-resistive random access memory (MRAM) with a twin cell structure are proposed. In order to enhance the cell reliability, a scheme of the low voltage precharge is employed to keep the magneto resistance (MR) ratio constant. Moreover, a common gate amplifier is utilized to provide sufficient voltage signal to the bit line sense amplifiers under the small MR ratio structures. To enhance the writing reliability, a current mode technique with tri-state current drivers is adopted. During write operations, the bit and /bit lines are connected. And 'HIGH' or 'LOW' data is determined in terms of the current direction flowing through the MTJ cell. With the viewpoint of the improved reliability of the cell behavior and sensing margin, HSPICE simulations proved the validity of the proposed schemes.

  • PDF

Key Technologies for Future Motor Drives

  • Lorenz Robert D.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.392-398
    • /
    • 2005
  • This paper presents technologies that have strategic importance in future motor drives. The underlying strategic issue for motor drives is maintaining cost while increasing certain dimensions of functionality. The dimensions of functionality which should increase include reliability and added value features such as providing continuous energy optimization, providing sensing of the driven system suitable for application specific diagnostic purposes, and providing continuously optimal thermal utilization of the capability of the drive. This paper will address each of these issues and discuss the technology status for each case, with a focus on research needed to fully deliver the needed functionality.

The Effect of Multiple Energy Detector on Evidence Theory Based Cooperative Spectrum Sensing Scheme for Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.295-309
    • /
    • 2016
  • Spectrum sensing is an essential function that enables cognitive radio technology to explore spectral holes and resourcefully access them without any harmful interference to the licenses user. Spectrum sensing done by a single node is highly affected by fading and shadowing. Thus, to overcome this, cooperative spectrum sensing was introduced. Currently, the advancements in multiple antennas have given a new dimension to cognitive radio research. In this paper, we propose a multiple energy detector for cooperative spectrum sensing schemes based on the evidence theory. Also, we propose a reporting mechanism for multiple energy detectors. With our proposed system, we show that a multiple energy detector using a cooperative spectrum sensing scheme based on evidence theory increases the reliability of the system, which ultimately increases the spectrum sensing and reduces the reporting time. Also in simulation results, we show the probability of error for the proposed system. Our simulation results show that our proposed system outperforms the conventional energy detector system.