• Title/Summary/Keyword: Sensing Network

Search Result 1,212, Processing Time 0.027 seconds

Analysis of Optimized Aggregation Timing in Wireless Sensor Networks

  • Lee, Dong-Wook;Kim, Jai-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.209-218
    • /
    • 2009
  • In a wireless sensor network(WSN) each sensor node deals with numerous sensing data elements. For the sake of energy efficiency and network lifetime, sensing data must be handled effectively. A technique used for this is data aggregation. Sending/receiving data involves numerous steps such as MAC layer control packet handshakes and route path setup, and these steps consume energy. Because these steps are involved in all data communication, the total cost increases are related to the counts of data sent/received. Therefore, many studies have proposed sending combined data, which is known as data aggregation. Very effective methods to aggregate sensing data have been suggested, but there is no means of deciding how long the sensor node should wait for aggregation. This is a very important issue, because the wait time affects the total communication cost and data reliability. There are two types of data aggregation; the data counting method and the time waiting method. However, each has weaknesses in terms of the delay. A hybrid method can be adopted to alleviate these problems. But, it cannot provide an optimal point of aggregation. In this paper, we suggest a stochastic-based data aggregation scheme, which provides the cost(in terms of communication and delay) optimal aggregation point. We present numerical analysis and results.

Joint Opportunistic Spectrum Access and Optimal Power Allocation Strategies for Full Duplex Single Secondary User MIMO Cognitive Radio Network

  • Yue, Wenjing;Ren, Yapeng;Yang, Zhen;Chen, Zhi;Meng, Qingmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3887-3907
    • /
    • 2015
  • This paper introduces a full duplex single secondary user multiple-input multiple-output (FD-SSU-MIMO) cognitive radio network, where secondary user (SU) opportunistically accesses the authorized spectrum unoccupied by primary user (PU) and transmits data based on FD-MIMO mode. Then we study the network achievable average sum-rate maximization problem under sum transmit power budget constraint at SU communication nodes. In order to solve the trade-off problem between SU's sensing time and data transmission time based on opportunistic spectrum access (OSA) and the power allocation problem based on FD-MIMO transmit mode, we propose a simple trisection algorithm to obtain the optimal sensing time and apply an alternating optimization (AO) algorithm to tackle the FD-MIMO based network achievable sum-rate maximization problem. Simulation results show that our proposed sensing time optimization and AO-based optimal power allocation strategies obtain a higher achievable average sum-rate than sequential convex approximations for matrix-variable programming (SCAMP)-based power allocation for the FD transmission mode, as well as equal power allocation for the half duplex (HD) transmission mode.

Robust wireless sensor network configuration design for structural health monitoring with optimal information-energy tradeoff

  • Xiao-Han Hao;Sin-Chi Kuok;Ka-Veng Yuen
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.465-482
    • /
    • 2024
  • In this paper, a robust wireless sensor network configuration design method is proposed to develop the optimal configuration under the consideration of sensor failure and energy consumption. A malfunctioned sensor in a wireless sensor network may lead to data transmission failure of the entire sensing cluster, inducing severe deterioration in system identification performance. The proposed method determines a wireless sensor network configuration that is robust against sensor failure. By utilizing Bayesian inference, we introduce a robust indicator to evaluate the impact on estimation accuracy of sensor configurations with various malfunctioned sensors. Moreover, a network formation strategy is proposed to optimize the energy efficiency of the wireless sensor network configuration. Therefore, the resultant robust wireless sensor network configuration can operate with the minimum energy consumption while the measurement information of the sensor network with malfunctioned sensors can be guaranteed. The proposed method is illustrated by designing the robust wireless sensor network configurations of a truss model and a bridge model.

Wake-up Algorithm of Wireless Sensor Node Using Geometric Probability (기하학적 확률을 이용한 무선 센서 노드의 웨이크 업 알고리즘 기법)

  • Choi, Sung-Yeol;Kim, Sang-Choon;Kim, Seong Kun;Lee, Je-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • Efficient energy management becomes a critical design issue for complex WSN (Wireless Sensor Network). Most of complex WSN employ the sleep mode to reduce the energy dissipation. However, it should cause the reduction of sensing coverage. This paper presents new wake-up algorithm for reducing energy consumption in complex WSN. The proposed wake-up algorithm is devised using geometric probability. It determined which node will be waked-up among the nodes having overlapped sensing coverage. The only one sensor node will be waked-up and it is ready to sense the event occurred uniformly. The simulation results show that the lifetime is increased by 15% and the sensing coverage is increased by 20% compared to the other scheduling methods. Consequently, the proposed wake-up algorithm can eliminate the power dissipation in the overlapped sensing coverage. Thus, it can be applicable for the various WSN suffering from the limited power supply.

Sequential fusion to defend against sensing data falsification attack for cognitive Internet of Things

  • Wu, Jun;Wang, Cong;Yu, Yue;Song, Tiecheng;Hu, Jing
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.976-986
    • /
    • 2020
  • Internet of Things (IoT) is considered the future network to support wireless communications. To realize an IoT network, sufficient spectrum should be allocated for the rapidly increasing IoT devices. Through cognitive radio, unlicensed IoT devices exploit cooperative spectrum sensing (CSS) to opportunistically access a licensed spectrum without causing harmful interference to licensed primary users (PUs), thereby effectively improving the spectrum utilization. However, an open access cognitive IoT allows abnormal IoT devices to undermine the CSS process. Herein, we first establish a hard-combining attack model according to the malicious behavior of falsifying sensing data. Subsequently, we propose a weighted sequential hypothesis test (WSHT) to increase the PU detection accuracy and decrease the sampling number, which comprises the data transmission status-trust evaluation mechanism, sensing data availability, and sequential hypothesis test. Finally, simulation results show that when various attacks are encountered, the requirements of the WSHT are less than those of the conventional WSHT for a better detection performance.

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

An Efficient Method for Improving the Reliability of Sensing Data Using Multi-sensors in Wireless Sensor Network Systems (다중센서를 이용한 무선센서네트워크시스템에서의 효율적인 측정데이터 신뢰성 향상 방법)

  • Lee, Sang-Shin;Song, Min-Hwan;Won, Kwang-Ho;Kim, Joong-Hwan
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.3
    • /
    • pp.116-121
    • /
    • 2009
  • A novel method for improving the reliability of sensing data using multi-sensors in wireless sensor network systems is presented in this paper. This method is successfully applied a fog monitoring system in the mountain area.

  • PDF

Change Attention based Dense Siamese Network for Remote Sensing Change Detection (원격 탐사 변화 탐지를 위한 변화 주목 기반의 덴스 샴 네트워크)

  • Hwang, Gisu;Lee, Woo-Ju;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.14-25
    • /
    • 2021
  • Change detection, which finds changes in remote sensing images of the same location captured at different times, is very important because it is used in various applications. However, registration errors, building displacement errors, and shadow errors cause false positives. To solve these problems, we propose a novle deep convolutional network called CADNet (Change Attention Dense Siamese Network). CADNet uses FPN (Feature Pyramid Network) to detect multi-scale changes, applies a Change Attention Module that attends to the changes, and uses DenseNet as a feature extractor to use feature maps that contain both low-level and high-level features for change detection. CADNet performance measured from the Precision, Recall, F1 side is 98.44%, 98.47%, 98.46% for WHU datasets and 90.72%, 91.89%, 91.30% for LEVIR-CD datasets. The results of this experiment show that CADNet can offer better performance than any other traditional change detection method.

Silence Reporting for Cooperative Sensing in Cognitive Radio Networks

  • Kim, Do-Yun;Choi, Young-June;Choi, Jeung Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • A cooperative spectrum sensing has been proposed to improve the sensing performance in cognitive radio (CR) network. However, cooperative sensing causes additional overhead for reporting the result of local sensing to the fusion center. In this paper, we propose a technique to reduce the overhead of data transmission of cooperative sensing for applying the quantum data fusion technique in cognitive radio networks by omitting the lowest quantized in the local sensed results. If a CR node senses the lowest quantized level, it will not send its local sensing data in the corresponding sensing period. The fusion center can implcitly know that a spectific CR node sensed lowest level if there is no report from that CR node. The goal of proposed sensing policy is to reduce the overhead of quantized data fusion scheme for cooperative sensing. Also, our scheme can be adapted to all quantized data fusion schemes because it only deal with the form of the quantized data report. The experimental results show that the proposed scheme improves performance in terms of reporting overhead.

Impact of Sensing Models on Probabilistic Blanket Coverage in Wireless Sensor Network (무선 센서 네트워크에서 Probabilistic Blanket Coverage에 대한 센싱 모델의 영향)

  • Pudasaini, Subodh;Kang, Moon-Soo;Shin, Seok-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.697-705
    • /
    • 2010
  • In Wireless Sensor Networks (WSNs), blanket (area) coverage analysis is generally carried to find the minimum number of active sensor nodes required to cover a monitoring interest area with the desired fractional coverage-threshold. Normally, the coverage analysis is performed using the stochastic geometry as a tool. The major component of such coverage analysis is the assumed sensing model. Hence, the accuracy of such analysis depends on the underlying assumption of the sensing model: how well the assumed sensing model characterizes the real sensing phenomenon. In this paper, we review the coverage analysis for different deterministic and probabilistic sensing models like Boolean and Shadow-fading model; and extend the analysis for Exponential and hybrid Boolean-Exponential model. From the analytical performance comparison, we demonstrate the redundancy (in terms of number of sensors) that could be resulted due to the coverage analysis based on the detection capability mal-characterizing sensing models.