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Abstract 
 

In a wireless sensor network (WSN) each sensor node deals with numerous sensing data 
elements. For the sake of energy efficiency and network lifetime, sensing data must be handled 
effectively. A technique used for this is data aggregation. Sending/receiving data involves 
numerous steps such as MAC layer control packet handshakes and route path setup, and these 
steps consume energy. Because these steps are involved in all data communication, the total 
cost increases are related to the counts of data sent/received. Therefore, many studies have 
proposed sending combined data, which is known as data aggregation. Very effective methods 
to aggregate sensing data have been suggested, but there is no means of deciding how long the 
sensor node should wait for aggregation. This is a very important issue, because the wait time 
affects the total communication cost and data reliability. There are two types of data 
aggregation; the data counting method and the time waiting method. However, each has 
weaknesses in terms of the delay. A hybrid method can be adopted to alleviate these problems. 
But, it cannot provide an optimal point of aggregation. In this paper, we suggest a 
stochastic-based data aggregation scheme, which provides the cost (in terms of 
communication and delay) optimal aggregation point. We present numerical analysis and 
results. 
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1. Introduction 

Recent advances in Micro-Electro Mechanical Systems (MEMS) have enabled the 
development of small sensor nodes composed of embedded devices such as communication 
boards and sensor boards. These sensor nodes have several types of sensing, computing and 
wireless communication capabilities. Sensor nodes can be deployed in an ad-hoc fashion, and 
operate via wireless communication. Because of these self-configuration abilities, the wireless 
sensor network (WSN) is attractive in many fields of research, e.g., military, environmental, 
etc. [1][2][3][4]. 

In WSN, several sensor nodes can detect the same sensing data at the position an event 
occurred. If they all transmit sensing data to the sink node, this results in numerous problems 
such as tremendous energy consumption, which shorten the network lifetime. Numerous steps 
are involved in sending the data (series of data packets),. In the MAC layer, a series of control 
packets must be sent/received to confirm/establish the next-hop receiver. For example, 
S-MAC [5] uses RTS/CTS packets to control the next-hop and sleep period. In the Network 
layer, the route path is set up first, prior to data transmission. Because these kinds of operations 
have a high energy consumption, each sensing data transmission causes discharging of the 
sensor node, resulting in network holes and reliability problems, and shortening of the network 
lifetime. Moreover, it generates heavy network traffic, which increases the end-to-end 
communication delay. 

In order to solve this problem, many researchers have studied methods for transmitting 
combined sensing data which is known as data aggregation.  By sending combined data, not 
only is the overhead caused by transmission diminished, but also the end-to-end delay is 
minimized. There are numerous types of data aggregation schemes [6][7][8][9][10][11][12]: 
centralized, tree-based, static-cluster-based, and dynamic-cluster-based. Each suggests a 
method to aggregate data, in terms of the aggregation path. However, although the proposed 
studies suggest very effective methods to aggregate sensing data, there is no means of deciding 
how long a sensor node should wait for aggregation. This is a very important issue, because the 
wait time affects the total communication cost and data reliability. 

Some studies show how to optimize the end-to-end delay during data aggregation [13][14]. 
However, these methods are based on tree-based aggregation only, and the only metric used 
for optimization is the delay. So, the proposed optimized point is not the real optimized 
aggregation point. 

In this paper, we suggest a stochastic-based data aggregation scheme, which provides the 
cost (in terms of communication and delay) optimal aggregation point. The optimal 
aggregation point is the point of minimum total cost. A node calculates the communication 
and delay costs according to the aggregation wait time. Based on the sum of these costs, a node 
determines the aggregation count of the minimum total cost. This results in reduced 
unnecessary wait time  and enhanced utility of aggregation. 

2. Related Work 
There are numerous types of data aggregation schemes [15][16]: centralized, tree-based, 
static-cluster-based, and dynamic-cluster-based. Each scheme suggests how to aggregate data 
in terms of the aggregation path. A centralized scheme aggregates sensing data in the sink 
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node. Every sensor node sends data without aggregation. After all data has arrived, the sink 
node aggregates the entire series of data. Despite the fact that this scheme is called aggregation, 
it is not in fact real aggregation. A tree-based scheme performs aggregation at the aggregation 
node [6], which is the merging point of two or more routing paths. If the network chooses a 
tree-based routing protocol, it constructs a data path tree first. And, ,there are some points in 
the tree structure at which different route paths are connected.  At these points, aggregation 
can be performed. A static-cluster scheme is applied to a cluster network [7][8][9]. A cluster 
network consists of several clusters, which has a cluster header. In this scheme, every sensor 
node in the cluster sends its data to the cluster header, and it aggregates the received data. The 
operation of a dynamic-cluster scheme is similar to that of a static-cluster scheme [10][11], but 
its cluster is formed dynamically when an event occurs and it is sensed by nodes. 

However, although each scheme suggests a very effective method to aggregate sensing data, 
we require a means of deciding how long sensor a node should wait for aggregation. Basically, 
there are two types of data aggregation that make these decisions: the data counting method 
and the time waiting method. In the data counting approach, each sensor node waits until 
receiving a predetermined number of packets. But, this method has problems such as the block 
state, which waits for the next packet forever. In the time waiting approach, each sensor node 
uses a timer, and if the timer is fired it sends the aggregated/non-aggregated data. But, this 
approach also has problems such as unnecessary waiting. A hybrid method can be adopted to 
alleviate the problems of both approaches, however, this is not the optimal solution. Some 
studies tried to determine the delay-optimal aggregation [12][13]. They involved performing 
data aggregation with a limited delay in tree-based aggregation. Each node calculates the wait 
time based on its level in the tree or the number of child nodes. These approaches are 
delay-optimized to some degree, but they are a kind of time waiting approach. Therefore, they 
also have similar problems such as unnecessary waiting. 

Moreover, network traffic changes according to time and region. This means that to 
determine the optimal value, each node considers several factors such as the event sensing 
ratio and configuration values (i.e., limited delay, cost metrics).  

In this paper, we suggest an optimal aggregation finding scheme, which considers not only 
the communication and delay cost, but also the ratio of generated sensing data. 

3. Proposed Scheme 

3.1 Basic Approach 
We use two metrics: communication cost and delay cost. Based on these metrics, we can 
derive the cost function, which can provide the optimal aggregation point. If we assume that 
there is sufficient data flow, we can find the optimal aggregation point as follows. 
First, we calculate the total cost when there is no aggregation (Eq. (1) ). 
 

Cost(t) =wc· Cc + wd· Cd(t) 
(wc: weight for communication, wd: weight for delay ,  

Cc: communication cost, Cd: delay cost) 
(1)

  

Cost(t) means the total cost per packet when the node waits t seconds, w means the weighted 
value for each metric (i.e., communication cost and delay cost), and Cc is the communication 
cost. We assume that Cc is constant. In the real-world, Cc depends on numerous factors such as 
the bit-size of a packet, and the control packet handshake. However, we simply assume that Cc 
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is related to the sending data count. This is reasonable, because the data payload in WSN is 
very small compared to the packet header and control packet. As the data payload increases, Cc 
also increases. But, the packet header size and control packet handshake do not change. 
Therefore, the effect of increasing the data payload is negligible. Cd is the delay cost, and the 
wait-time related cost function, Cd(t) = DelayCostFactor × t. We assume that the delay cost is 
propotional to the delay time and as the wait time increases the delay cost also increases. 
Based on Eq. (1), when both weighted values are equal (wc=wd=1), the total cost per packet, 
Cost(t), is a wait-time related function. The total cost is linearly increased as the wait time 
increases, because there is no aggregation. 
 

 
 (x : aggregation count) 

(2)

  

Cost(x) means the total cost per packet when the node aggregates x times (Thus, 
(x+1)-packets are reduced to one). We substitute the time t for the aggregation count x for ease 
of understanding. x is a function of t. In Eq. (2), the communication cost term is divided by 
x+1, because the aggregated packet is transmitted together. So, the cost per packet decreases 
by a factor of x+1. Otherwise, the delay cost term increases by a factor of x. This is because x 
additional packets must wait for aggregation. Thus, Cd(x) = (DelayCostFactor × t/2) × x. We 
assume that the weighted values are equal (wc=wd=1). 
 

 
Fig. 1. Example of total cost of basic approach 

 
Fig. 1 shows an example of the total cost of the basic approach. We set Cc = 36 mJ (two 

control packets , one data packet) [17],  DelayCostFactor = 0.1 mJ/Sec, t=1/λ × x (λ is the 
packet generation ratio) and λ=0.5. Based on Fig. 1, as the aggregation count increases, the 
communication cost decreases and the delay cost is increased. And, the total cost per packet is 
optimized (8.5 mJ) when the aggregation count is 5. As a result, we can determine the optimal 
aggregation point in the given environments.  
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3.2 Stochastic Approach 
In the basic approach, we present the core principle for optimizing the aggregation point. 
However, the real-world situation involves several factors. In Fig. 1, we assume that the 
packet generation ratio λ (which is the same as the event sensing ratio) is static. If λ=0.5, an 
event occurs every two seconds and a node senses the event. This assumption is unrealistic. So 
we use the following probability distribution function: 
 

(3)
  
Based on Eq. (3), we can derive the success probability of aggregation during the t waiting 
time via integral calculus (0 to t). The success and failure probability is shown in Eq. (4). 
 

(4)

  
Also, we can derive the expected wait time E(t),which is the time the node waits until the first 
successful aggregation on the condition of occurrence. 
 

(5)

  
So, we can calculate the total expected cost per packet of waiting for the first successful 
aggregation as follows: 
 

 

(6)

  
Based on Eq. (6), the cost of the failure situation is  merely one sending cost and the total t 

time waiting cost. The cost of the success situation is 50 % of the sending cost (because of the 
cost per packet; two packets share the communication cost) and the E(t) time waiting cost. So 
the t – E(t) time waiting cost and 50 % of the communication cost are saved. 

Finally, we can derive the expected total cost per packet for the series of aggregations 
shown below. First, we calculate the total delay cost of the entire series of packets rather than 
that of each packet. The reason we only calculate the delay cost is that the communication cost 
is only incurred once, because of aggregation. 
 

 
(k is initially set to one, and recursion is performed for aggregation count n) 

 

(7)
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The total delay cost means the total delay cost of an aggregation series. For each iteration, a 
delayed packet is added. Therefore, Cd must be multiplied by k. Eq. (8) shows the final 
expected cost calculation. 
 

(8)

  
Whether aggregation occurs or not, only one transmission is required. This is also the case if 

there are several aggregations. But, the delay cost depends on the aggregation count. This is 
why we previously calculated WholeDelayCost in Eq. (7). And, since we want to derive the 
expected cost per packet, we divide the total cost by the expected aggregation count. The 
important point is that the expected aggregation count is not n, which is merely one case of 
aggregation. We want a stochastic-based approach that considers all cases. This is the reason 
for the expected aggregation count. The expected aggregation count can be used to derive the 
sum of the series of success probabilities. 

By using a stochastic approach, we can determine the optimal point of aggregation based on 
the communication and delay costs. Also, each sensor node can calculate its own event sensing 
ratio (λ). Thus, every part of the sensor network can adapt the aggregation optimal point 
automatically.  

4. Analysis 
For analysis, we assume that there are three sensor nodes n1, n2, n3 each with its own event 
sensing ratio, λ1, λ2, λ3, respectively. We use the total event sensing ratio, λ = λ1 + λ2 + λ3. 
 

 
Fig. 2. Total cost per packet (Cc = 36 mJ,  DelayCostFactor = 0.9mJ/Sec) 

 
Fig. 2 shows the result of analysis, where Cc = 36 mJ,  DelayCostFactor = 0.9 mJ/Sec. The 
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event sensing ratio λ varies from 0.1 to 0.9. Each graph in the figure has the lowest cost point . 
If λ=0.1, the lowest cost is 29.9994 mJ, where the aggregation count is 3. In each of the cases 
where λ=0.3, λ=0.5, λ=0.7, λ=0.9, the lowest cost is 16.2 mJ, 12.3 mJ, 10.2857 mJ, 9 mJ 
respectively, and the aggregation count is 5, 6, 8, 9, respectively. Thus, for each event sensing 
ratio, there is an optimal aggregation point (where the aggregation count is 3, 5, 6, 8, 9, 
respectively) and each is different. Also, compared to the non-aggregation cost (36 mJ), every 
optimal point shows numerous gains. And, as λ increases, the amount of gain also increases. 
Compared to the case where λ = 0.1, the case where λ = 0.9 saves more than 20 mJ. In other 
words, if there are numerous events generated in the target field, the effect of data aggregation 
is maximized. But, beyond certain points, aggregation is less effective. i.e., for most cases in 
Fig. 2, beyond the aggregation count of 12 (where λ =0.1, 6), the cost exceeds 36 mJ. 
 

Table 1. Data sheet for Fig. 2. 

Aggregation 
Count 

Event sensing ratio (λ) 
0.1 0.3 0.5 0.7 0.9 

1 44.99959 39 37.8 37.28571 37 
2 31.50093 22.5 20.7 19.92857 19.5 
3 29.9994 18 15.6 14.57143 14 
4 31.49415 16.5 13.5 12.21429 11.5 
5 34.1781 16.2 12.6 11.05714 10.2 
6 37.43119 16.5 12.3 10.5 9.5 
7 40.94267 17.14286 12.34286 10.28571 9.142857 
8 44.44976 18 12.6 10.2857 9 
9 47.58821 19 13 10.42857 9 

10 49.83186 20.1 13.5 10.67143 9.1 
11 50.73137 21.27273 14.07273 10.98701 9.272727 
12 44.99959 39 37.8 37.28571 37 
… … … … … … 
80 48.43806 45.97176 45.56015 45.3946 40.94997 

 

 
Fig. 3. Total cost per packet (Cc = 36 mJ, λ = 0.9) 
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Fig. 3 shows the cost graph in terms of the DelayCostFactor (0.1, 0.5, 0.9). As the 
DelayCostFactor increases, the optimal aggregation point decreases, and the cost increase 
factor is larger. Thus, if the DelayCostFactor increases, it is better to send data early rather 
than wait for aggregation. 

Fig. 4 shows the cost graph in terms of the communication cost Cc (18, 36, 72). The optimal 
aggregation point differs slightly (6, 8, 12). As Cc increases, more aggregation is effective. 
This is because several packets share the communication costs. Moreover, in contrast to Fig. 3, 
as the aggregation count increases, the cost becomes increasingly similar. Thus, data 
aggregation is more sensitive to the delay cost than the communication cost. This is because 
the communication cost is constant, whereas the delay cost depends on time. 
Based on the analysis, it is clear that the higher the number of events sensed, and the higher the 
communication cost, the more effectively aggregation is optimized. Also, if the delay cost is 
large, it is more effective to send data as soon as possible. 
 

 
Fig. 4. Total cost per packet (λ = 0.9, DelayCostFactor = 0.9mJ/Sec) 

5. Conclusions 
In this paper, we provided a method of finding the optimal aggregation point based on cost. 
For the sake of energy efficiency, network lifetime and reliability, data aggregation is 
inevitable in WSN. Data aggregation combines several data transmissions, which saves 
communication energy and reduces network traffic. Also, it prevents discharging of the sensor 
node, which eliminates network holes and increases data reliability. The important issue in 
data aggregation is deciding long the node should wait for aggregation. The static methods 
such as data couting and time waiting are unsuitable, because numerous metrics such as the 
event sensing ratio, delay contraint and traffic dependent communication cost depend on time. 
By using our proposed scheme, which considers these kinds of metrics, each node can find its 
optimal aggregation point, which is adaptive to envionmental changes. Therefore, each part of 
the sensor network can perform data aggregation specific to its particular enviroment, and this 
enables a more practical sensor network. 
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