Impact of Sensing Models on Probabilistic Blanket Coverage in Wireless Sensor Network

무선 센서 네트워크에서 Probabilistic Blanket Coverage에 대한 센싱 모델의 영향

  • 수보드 푸다사이니 (조선대학교 컴퓨터공학과 무선통신 및 네트워크 연구실) ;
  • 강문수 (조선대학교 컴퓨터공학과 무선통신 및 네트워크 연구실) ;
  • 신석주 (조선대학교 컴퓨터공학과 무선통신 및 네트워크 연구실)
  • Received : 2009.09.22
  • Accepted : 2010.06.18
  • Published : 2010.07.31

Abstract

In Wireless Sensor Networks (WSNs), blanket (area) coverage analysis is generally carried to find the minimum number of active sensor nodes required to cover a monitoring interest area with the desired fractional coverage-threshold. Normally, the coverage analysis is performed using the stochastic geometry as a tool. The major component of such coverage analysis is the assumed sensing model. Hence, the accuracy of such analysis depends on the underlying assumption of the sensing model: how well the assumed sensing model characterizes the real sensing phenomenon. In this paper, we review the coverage analysis for different deterministic and probabilistic sensing models like Boolean and Shadow-fading model; and extend the analysis for Exponential and hybrid Boolean-Exponential model. From the analytical performance comparison, we demonstrate the redundancy (in terms of number of sensors) that could be resulted due to the coverage analysis based on the detection capability mal-characterizing sensing models.

WSN에서의 커버리지 문제는 센싱 커버리지에 대한 요구조건을 만족시키기 위해 필요한 최소한의 활동 센서(active sensor)의 개수로 공식화될 수 있다. 일반적으로 확률적 기하학을 이용하여 WSN의 커버리지 분석을 수행하기 때문에 센싱 모델이 커버리지 분석의 핵심 요소로 간주된다. 따라서, 커버리지 분석의 정확도는 어떠한 센싱 모델을 가정하였느냐에 따라 달라질 수 있으며 분석에 사용된 센싱 모델이 얼마나 실 센싱 환경에 가깝게 특성화 되었느냐에 따라 달라진다. 본 논문에서는 Boolean 모델, Exponential 모델, Hybrid 모델 등 다양한 형태의 결정적 혹은 확률적 센싱 모델들을 조사하고 각각의 센싱 모델에 따라 일정 영역을 센싱할 수 있는 최소한의 센서 개수를 도출할 수 있는 수리적 분석을 수행하였으며 이를 통해 성능을 비교 평가하였다.

Keywords

References

  1. M. Cardei and J. Wu, "Coverage in Wireless Sensor Networks," Handbook of Sensor Networks, CRC Press, 2005.
  2. Y. Tsai, "Sensing Coverage for Randomly Distributed Wireless Sensor Networks in Shadowed Environments," IEEE Trans. Veh. Technol., Vol.57, No.1, pp.556-564, Jan. 2008. https://doi.org/10.1109/TVT.2007.905624
  3. B. Li, and D. Towsley, "A study of the Coverage of Large-scale Sensor Networks," in Proc. IEEE International Conference on Mobile Ad-hoc and Sensor Systems, pp.475-483, Oct. 2004
  4. C. Liu, K. Wu, Y. Xiao, and B. Sun, "Random Coverage with Guaranteed Connectivity: Joint Scheduling for Wireless Sensor Networks," IEEE Trans. Parallel Distrib. Syst., Vol.17, No.6, pp.562-572, 2006. https://doi.org/10.1109/TPDS.2006.77
  5. A. Elfes, "Using Occupancy Grids for Mobile Robot Perception and Navigation," IEEE Computer, Vol.22, No.6, pp.46-57, 1989.
  6. M. Hefeeda and H. Ahmadi, "A Probabilistic Coverage Protocol for Wireless Sensor Networks," in Proc. ICNP, Oct. 2007.
  7. H. Zhang and J. C. Hou, "Maintaining Sensing Coverage and Connectivity in Large Sensor Networks," Ad Hoc & Sensor Wireless Networks, Vol.1, pp.89-124, 2005.
  8. W. Choi and S. K. Das, "Coverage- Adaptive Random Sensor Scheduling for Application Aware Data Gathering in Wireless Sensor Networks," Computer Communications, Vol.29, No.17, pp.3467-3482, 2006. https://doi.org/10.1016/j.comcom.2006.01.033
  9. C. Gui and P. Mohapatra, "Power Conservation and Quality of Surveillance in Target Tracking Sensor Networks," in Proc. ACM Mobicom, pp.129-143, 2004.
  10. S. Pudasaini, S. Moh, and S. Shin, "Stochastic Coverage Analysis of Wireless Sensor Network with Hybrid Sensing Model," in Proc. ICACT, Vol.1, pp.549-553, Feb. 2009.
  11. N. Ahmed, S. Kanhere, and S. Jha, "Probabilistic Coverage in Wireless Sensor Networks," in Proc. IEEE Conference on Local Computer Networks, pp, 672-681, Nov. 2005.