• Title/Summary/Keyword: Sensing Module

Search Result 299, Processing Time 0.024 seconds

Modified Fold Type Helicone Reflector for Efficient Satellite TT&C Having Variable Coverage Area (가변 커버리지를 갖는 위성 관제용 접이식 헬리콘 반사체 안테나 성능 연구)

  • Lee, Sang-Min;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.914-923
    • /
    • 2009
  • Helix antennas have been widely applied to satellite TT&C, data communication and GPS receiver systems onboard military, remote sensing and communication purpose satellites. The helix antennas are known to be convenient to control impedance and radiation coverage characteristics with a maximum directivity in satellite z-axis. Waveguide horn is commonly used for radar system that needs ultra-wideband pulse for exploration ground radar and electromagnetic disability measurement etc. It has high efficiency and low reflection characteristics provided by the low-profile shape and suppressed radiation distortion. In this paper, a waveguide horn structure incorporated with helix antenna design is proposed for satellite applications that require ultra-wideband pulse radar and high rate RF data communication link to ground station over wide coverage area. The main design concern is to synthesize variable beam forming pattern based on modified horn-helix combination helicone structure such that multi-mission antenna is implemented applicable for TT&C, earth observation, high data rate transmission. Waveguide horn helps to reduce the overall antenna structure size by introduction fold type reflector connected to the tapered helix antenna. The next generation KOMPSAT satellite currently under development requires high-performance precision attitude control system. We present an initial design of a hybrid hern-helix antenna structure suitable for efficient RF communication module design of multi-purpose satellite systems.

Development of portable digital radiography system with device for sensing X-ray source-detector angle and its application in chest imaging (엑스선촬영 각도를 측정할 수 있는 장치 개발과 흉부 X선 영상촬영에서의 적용)

  • Kim, Tae-Hoon;Heo, Dong-Woon;Ryu, Jong-Hyun;Jeong, Chang-Won;Jun, Hong Young;Kim, Kyu Gyeom;Hong, Jee Min;Jang, Mi Yeon;Kim, Dae Won;Yoon, Kwon-Ha
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.235-238
    • /
    • 2017
  • This study was to develop a portable digital radiography (PDR) system with a function measuring the X-ray source-with-detector angle (SDA) and to evaluate the imaging performance for the diagnosis of chest imaging. The SDA device consisted of an Arduino, an accelerometer and gyro sensor, and a Bluetooth module. According to different angle degrees, five anatomical landmarks on chest images were assessed using a 5-point scale. Mean signal-to-noise ratio and contrast-to-noise ratio were 182.47 and 141.43. Spatial resolution (10% MTF) and entrance surface dose were 3.17 lp/mm ($157{\mu}m$) and 0.266mGy. The angle values of SDA device were not significant difference as compared to those of the digital angle meter. In chest imaging, SNR and CNR values were not significantly different according to different angle degrees (repeated-measures ANOVA, p>0.05). The visibility scores of the border of heart, 5th rib and scapula showed significant differences according to different angles (rmANOVA, p<0.05), whereas the scores of the clavicle and 1st rib were not significant. It is noticeable that the increase in SDA degree was consistent with the increase of visibility score. Our PDR with SDA device would be useful to be applicable to clinical radiography setting according to the standard radiography guideline at various fields.

  • PDF

Current Status and Outlook of the Space Economy (우주분야 연구개발 및 산업동향)

  • Choi, Soo-Mi
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.3-13
    • /
    • 2008
  • The year 2007 marked two important anniversaries for space. The Soviet Union launched Sputnik 50 years ago on October 4. 1957. The 40th anniversary of the United Nations treaty on outer space was also marked in 2007. 2008 and 2007 were full of dramatic events of space activity as well : Success of Japan's first large lunar explorer 'KAGUYA'(SELENE) and China's 'Chang'e 1', launch of ISS laboratory module, 'Colombus' and 'Kibo', test of China's ASAT, and success of Korea's first astronaut program and so on. International government space budgets reached $78.3 billion in 2007, a strong growth rate of 36% over 2006, and the recently released Global Exploration Strategy, The Framework for Coordination is a set of guidelines for international cooperation among 14 of the world's space agencies. Worldwide space industry revenue grew by 20% over 2005, $106.1 billion in 2006 and $173.9 billion expected in 2007. This paper discusses the issues related to the Earth observation R&D trend and market in detail. Korea's 2008 government space spending is \316.4 billion, 2007 space industry revenue was $106 million. Several research projects are now underway and STSAT 2 will be launched by KSLV-1 at the Naro Space Center within this year.

  • PDF

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

The relationships of erosion and river channel change in the Geum river basin (금강유역의 침식과 하상변동과의 관계)

  • 양동윤;짐주용;이진영;이창범;정혜정
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.52-74
    • /
    • 2000
  • The basement rock of upper stream of Keum River Valley consists of Precambrian gneiss which is resistant to weathering. That of mid and lower stream valley, however, is mainly composed of Mesozoic granites which are vulnerable to weathering. The upstream part of Geum River Basin is typified by the deeply-incised and steep meandering streams, whereas mid and lower part is characterized by wide floodplain and gently dipping river bottom toward the Yellow Sea. In particular flooding deposits, in which are imprinted a number of repetitions of erosion and sedimentation during the Holocene, are widely distributed in the lower stream of Geum River Basin. For understanding of erosions in the mid and lower stream of Geum River Basin, the rate of erosion of each small basins were estimated by using the data of field survey, erosional experiments and GIS ananlysis. It was revealed that erosion rate appeared highest in granite areas, and overall areas, in this field survey were represented by relatively high erosion rates. By implemeatation of remote sensing and imagery data, the temporal changes of river bed sediments for about last 11 years were successfully monitored. Observed as an important phenomenon is that the river bed has been risen since 1994 when an embankment (Dyke) was constructed in the estuarine river mouth. From the results derived from the detailed river bed topographical map made in this investigation, the sedimentation of the lower river basin is considered to be deposited with about 5 cm/year for the last 11 years. Based on this river bed profile analysis by HEC-6 module, it is predicted that Geum River bed of Ganggyeong area is continuously rising up in general until 2004. Although extraction of a large amount of aggregates from Gongju to Ganggyung areas, the Ganggyung lower stream shows the distinct sedimentation. Therefore, it is interpreted that the active erosions of tributary basins Geum drainage basins can affect general river bed rising changes of Geum River.

  • PDF

Automatic measurement of voluntary reaction time after audio-visual stimulation and generation of synchronization signals for the analysis of evoked EEG (시청각자극 후의 피험자의 자의적 반응시간의 자동계측과 유발뇌파분석을 위한 동기신호의 생성)

  • 김철승;엄광문;손진훈
    • Science of Emotion and Sensibility
    • /
    • v.6 no.4
    • /
    • pp.15-23
    • /
    • 2003
  • Recently, there have been many attempts to develop BCI (brain computer interface) based on EEG (electroencephalogram). Measurement and analysis of EEG evoked by particular stimulation is important for the design of brain wave pattern and interface of BCI. The purpose of this study is to develop a general-purpose system that measures subject's reaction time after audio-visual stimulation which can work together with any other biosignal measurement systems. The entire system is divided into four modules, which are stimulation signal generation, reaction time measurement, evoked potential measurement and synchronization. Stimulation signal generation module was implemented by means of Flash. Measurement of the reaction time (the period between the answer request and the subject reaction) was achieved by self-made microcontroller system. EEG measurement was performed using the ready-made hardware and software without any modification. Synchronization of all modules was achieved by, first, the black-and-white signals on the stimulation screen synchronized with the problem presentation and the answer request, second, the photodetectors sensing the signals. The proposed method offers easy design of purpose-specific system only by adding simple modules (reaction time measurement, synchronization) to the ready-made stimulation and EEG system, and therefore, it is expected to accelerate the researches requiring the measurement of evoked response and reaction time.

  • PDF

Development of Composite Sensing Technology Using Internet of Things (IoT) for LID Facility Management (LID 시설 관리를 위한 사물인터넷(IoT) 활용 복합 센싱 적용기술 개발)

  • Lee, Seungjae;Jeon, Minsu;Lee, Jungmin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.312-320
    • /
    • 2020
  • Various LIDs with natural water circulation function are applied to reduce urban environmental problems and environmental impact of development projects. However, excessive Infiltration and evaporation of LID facilities dry the LID internal soil, thus reducing plant and microbial activity and reducing environmental re duction ability. The purpose of this study was to develop a real-time measurement system with complex sensors to derive the management plan of LID facilities. The test of measurable sensors and Internet of Things (IoT) application was conducted in artificial wetlands shaped in acrylic boxes. The applied sensors were intended to be built at a low cost considering the distributed LID and were based on Arduino and Raspberry Pi, which are relatively inexpensive and commercialized. In addition, the goal was to develop complex sensor measurements to analyze the current state o f LID facilities and the effects of maintenance and abnormal weather conditions. Sensors are required to measure wind direction, wind speed, rainfall, carbon dioxide, Micro-dust, temperature and humidity, acidity, and location information in real time. Data collection devices, storage server programs, and operation programs for PC and mobile devices were developed to collect, transmit and check the results of measured data from applied sensors. The measurements obtained through each sensor are passed through the Wifi module to the management server and stored on the database server in real time. Analysis of the four-month measurement result values conducted in this study confirmed the stability and applicability of ICT technology application to LID facilities. Real-time measured values are found to be able to utilize big data to evaluate the functions of LID facilities and derive maintenance measures.

Development of an IMU-based Wearable Ankle Device for Military Motion Recognition (군사 동작 인식을 위한 IMU 기반 발목형 웨어러블 디바이스 개발)

  • Byeongjun Jang;Jeonghoun Cho;Dohyeon Kim;Kyeong-Won Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.23-34
    • /
    • 2023
  • Wearable technology for military applications has received considerable attention as a means of personal status check and monitoring. Among many, an implementation to recognize specific motion states of a human is promising in that allows active management of troops by immediately collecting the operational status and movement status of individual soldiers. In this study, as an extension of military wearable application research, a new ankle wearable device is proposed that can glean the information of a soldier on the battlefield on which action he/she takes in which environment. Presuming a virtual situation, the soldier's upper limbs are easily exposed to uncertainties about circumstances. Therefore, a sensing module is attached to the ankle of the soldier that may always interact with the ground. The obtained data comprises 3-axis accelerations and 3-axis rotational velocities, which cannot be interpreted by hand-made algorithms. In this study, to discern the behavioral characteristics of a human using these dynamic data, a data-driven model is introduced; four features extracted from sliced data (minimum, maximum, mean, and standard deviation) are utilized as an input of the model to learn and classify eight primary military movements (Sitting, Standing, Walking, Running, Ascending, Descending, Low Crawl, and High Crawl). As a result, the proposed device could recognize a movement status of a solider with 95.16% accuracy in an arbitrary test situation. This research is meaningful since an effective way of motion recognition has been introduced that can be furtherly extended to various military applications by incorporating wearable technology and artificial intelligence.

Experimental Analysis to Derive Optimal Wavelength in Underwater Optical Communication Environment (수중 광통신 환경에서 최적 파장을 도출하기 위한 실험적 해석)

  • Dong-Hyun Kwak;Seung-il Jeon;Jung-rak Choi;Min-Seok Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.478-488
    • /
    • 2023
  • This paper investigates the naval application of laser communication as a potential replacement for traditional acoustic wave communication in underwater environments. We developed a laser transceiver using Arduino and MATLAB, conducting a water tank experiment to validate communication feasibility across diverse underwater conditions. In the first experiment, when transmitting data through a laser, the desired message was converted into data and transmitted, received, and confirmed to be converted into the correct message. In the second experiment, the operation of communication in underwater situations was confirmed, and in the third experiment, the intensity of light was measured using the CDS illuminance sensor module and the limits of laser communication were measured and confirmed in various underwater situations. Additionally, MATLAB code was employed to gather data on salinity, water temperature, and water depth for calculating turbidity. Optimal wavelength values (532nm, 633nm, 785nm, 1064nm) corresponding to calculated turbidity levels (5, 20, 55, 180) were determined and presented. The study then focuses on analyzing potential applications in naval tactical communication, remote sensing, and underwater drone control. Finally, we propose measures for overcoming current technological limitations and enhancing performance.