• Title/Summary/Keyword: Sensing Accuracy

Search Result 1,410, Processing Time 0.022 seconds

Automotive High Side Switch Driver IC for Current Sensing Accuracy Improvement with Reverse Battery Protection

  • Park, Jaehyun;Park, Shihong
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • This paper presents a high-side switch driver IC capable of improving the current sensing accuracy and providing reverse battery protection. Power semiconductor switches used to replace relay switches are encumbered by two disadvantages: they are prone to current sensing errors and they require additional external protection circuits for reverse battery protection. The proposed IC integrates a gate driver and current sensing blocks, thus compensating for these two disadvantages with a single IC. A p-sub-based 90-V $0.13-{\mu}m$ bipolar-CMOS-DMOS (BCD) process is used for the design and fabrication of the proposed IC. The current sensing accuracy (error ${\leq}{\pm}5%$ in the range of 0.1 A-6.5 A) and the reverse battery protection features of the proposed IC were experimentally tested and verified.

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Posture Sensing of a Tractor Using a DGPS and a Gyro Compass (DGPS와 Gyro Compass를 이용한 트랙터의 자세검출)

  • 정선옥;박원규;김상철;박우풍;장영창
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.179-186
    • /
    • 1998
  • This study was conducted to sense posture of an autonomous tractor using a DGPS, a gyro compass, and a potentiometer. Posture sensing system was constructed and its accuracy was evaluated. The accuracy of DGPS was evaluated under stationary and moving conditions, and the performance of the gyro compass and the potentiometer was investigated by measuring bearing and steering angles, respectively. Also, the effect of DGPS interference by obstacles was evaluated experimentally. The position accuracy was about 6.6cm(95%) under the stationary condition and 10 cm at sharp turning condition. Steering angle of the tractor could be related linearly to the output of the potentiometer that was installed on the rotating center of a knuckle arm. The positioning accuracy of the DGPS varied significantly according to the number of visible GPS satellites, but was good with more than 7 satellites. The DGPS gave bad solutions for sensing the posture of tractor when signals from satellites or the correction data from the base were interfered by obstacles.

  • PDF

Geometric Assessment and Correction of SPOT5 Imagery

  • Kwoh, Leong Keong;Xiong,, Zhen;Shi, Fusheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.286-288
    • /
    • 2003
  • In this paper, we present our implementation of the direct camera model (image to ground) for SPOT5 and use it to assess the geometric accuracy of SPOT5 imagery. Our assessment confirms the location accuracy of SPOT5 imagery (without use of GCPs) is less than 50m. We further introduce a few attitude parameters to refine the camera model with GCPs. The model is applied to two SPOT5 supermode images, one near vertical, incidence angle of 3 degrees, and one far oblique, incidence angle of 27 degrees. The results show that accuracy (rms of check points) of about one pixel (2.5m) can be achieved with about 4 GCPs by using only 3 parameters to correct the yaw, pitch and roll of the satellite.

  • PDF

Calibration and INvestigation into Measurement Performance of a Visual Sensing System (시각측정시스템의 캘리브레이션 및 측정성능 검토)

  • Kim, Jin-Young;Cho, Hyung-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.113-121
    • /
    • 1999
  • It is necessary to calibrate measurement systems to enhance its measurement accuracy. The visual sensing system that is presented in our previous work has to be calibrated, too. It is a multiple mirror system for three-dimensional measurement, which is composed of a camera and a series of mirrors. It is important to calibrate the positions and orientations of the mirrors relative to the camera because they have direct influence on the relationship between the image plane and the task space. This paper presents the calibration method for the visual sensing system. To confirm the measurement performance of the implemented system. its measurement accuracy in measuring the locations in three-dimensional space is investigated. A series of experiments for measuring the locations of the circle-shaped marks are performed. Experimental results show that the sensing system can be effectively used for three-dimensional measurement.

  • PDF

Massive MIMO Channel Estimation Algorithm Based on Weighted Compressed Sensing

  • Lv, Zhiguo;Wang, Weijing
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1083-1096
    • /
    • 2021
  • Compressed sensing-based matching pursuit algorithms can estimate the sparse channel of massive multiple input multiple-output systems with short pilot sequences. Although they have the advantages of low computational complexity and low pilot overhead, their accuracy remains insufficient. Simply multiplying the weight value and the estimated channel obtained in different iterations can only improve the accuracy of channel estimation under conditions of low signal-to-noise ratio (SNR), whereas it degrades accuracy under conditions of high SNR. To address this issue, an improved weighted matching pursuit algorithm is proposed, which obtains a suitable weight value uop by training the channel data. The step of the weight value increasing with successive iterations is calculated according to the sparsity of the channel and uop. Adjusting the weight value adaptively over the iterations can further improve the accuracy of estimation. The results of simulations conducted to evaluate the proposed algorithm show that it exhibits improved performance in terms of accuracy compared to previous methods under conditions of both high and low SNR.

Fast Cooperative Sensing with Low Overhead in Cognitive Radios

  • Dai, Zeyang;Liu, Jian;Li, Yunji;Long, Keping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.58-73
    • /
    • 2014
  • As is well known, cooperative sensing can significantly improve the sensing accuracy as compared to local sensing in cognitive radio networks (CRNs). However, a large number of cooperative secondary users (SUs) reporting their local detection results to the fusion center (FC) would cause much overhead, such as sensing delay and energy consumption. In this paper, we propose a fast cooperative sensing scheme, called double threshold fusion (DTF), to reduce the sensing overhead while satisfying a given sensing accuracy requirement. In DTF, FC respectively compares the number of successfully received local decisions and that of failed receptions with two different thresholds to make a final decision in each reporting sub-slot during a sensing process, where cooperative SUs sequentially report their local decisions in a selective fashion to reduce the reporting overhead. By jointly considering sequential detection and selective reporting techniques in DTF, the overhead of cooperative sensing can be significantly reduced. Besides, we study the performance optimization problems with different objectives for DTF and develop three optimum fusion rules accordingly. Simulation results reveal that DTF shows evident performance gains over an existing scheme.

Adaptive Cooperative Spectrum Sensing Based on SNR Estimation in Cognitive Radio Networks

  • Ni, Shuiping;Chang, Huigang;Xu, Yuping
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.604-615
    • /
    • 2019
  • Single-user spectrum sensing is susceptible to multipath effects, shadow effects, hidden terminals and other unfavorable factors, leading to misjudgment of perceived results. In order to increase the detection accuracy and reduce spectrum sensing cost, we propose an adaptive cooperative sensing strategy based on an estimated signal-to-noise ratio (SNR). Which can adaptive select different sensing strategy during the local sensing phase. When the estimated SNR is higher than the selection threshold, adaptive double threshold energy detector (ED) is implemented, otherwise cyclostationary feature detector is performed. Due to the fact that only a better sensing strategy is implemented in a period, the detection accuracy is improved under the condition of low SNR with low complexity. The local sensing node transmits the perceived results through the control channel to the fusion center (FC), and uses voting rule to make the hard decision. Thus the transmission bandwidth is effectively saved. Simulation results show that the proposed scheme can effectively improve the system detection probability, shorten the average sensing time, and has better robustness without largely increasing the costs of sensing system.

Reducing Spectral Signature Confusion of Optical Sensor-based Land Cover Using SAR-Optical Image Fusion Techniques

  • ;Tateishi, Ryutaro;Wikantika, Ketut;M.A., Mohammed Aslam
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.107-109
    • /
    • 2003
  • Optical sensor-based land cover categories produce spectral signature confusion along with degraded classification accuracy. In the classification tasks, the goal of fusing data from different sensors is to reduce the classification error rate obtained by single source classification. This paper describes the result of land cover/land use classification derived from solely of Landsat TM (TM) and multisensor image fusion between JERS 1 SAR (JERS) and TM data. The best radar data manipulation is fused with TM through various techniques. Classification results are relatively good. The highest Kappa Coefficient is derived from classification using principal component analysis-high pass filtering (PCA+HPF) technique with the Overall Accuracy significantly high.

  • PDF

Deterministic Bipolar Compressed Sensing Matrices from Binary Sequence Family

  • Lu, Cunbo;Chen, Wengu;Xu, Haibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2497-2517
    • /
    • 2020
  • For compressed sensing (CS) applications, it is significant to construct deterministic measurement matrices with good practical features, including good sensing performance, low memory cost, low computational complexity and easy hardware implementation. In this paper, a deterministic construction method of bipolar measurement matrices is presented based on binary sequence family (BSF). This method is of interest to be applied for sparse signal restore and image block CS. Coherence is an important tool to describe and compare the performance of various sensing matrices. Lower coherence implies higher reconstruction accuracy. The coherence of proposed measurement matrices is analyzed and derived to be smaller than the corresponding Gaussian and Bernoulli random matrices. Simulation experiments show that the proposed matrices outperform the corresponding Gaussian, Bernoulli, binary and chaotic bipolar matrices in reconstruction accuracy. Meanwhile, the proposed matrices can reduce the reconstruction time compared with their Gaussian counterpart. Moreover, the proposed matrices are very efficient for sensing performance, memory, complexity and hardware realization, which is beneficial to practical CS.