• 제목/요약/키워드: Senescence-associated secretory phenotypes (SASP)

검색결과 4건 처리시간 0.018초

Erratum to: From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes

  • Byun, Hae-Ok;Lee, Young-Kyoung;Kim, Jeong-Min;Yoon, Gyesoon
    • BMB Reports
    • /
    • 제49권11호
    • /
    • pp.641-650
    • /
    • 2016
  • Cellular senescence is a process by which cells enter a state of permanent cell cycle arrest. It is commonly believed to underlie organismal aging and age-associated diseases. However, the mechanism by which cellular senescence contributes to aging and age-associated pathologies remains unclear. Recent studies showed that senescent cells exert detrimental effects on the tissue microenvironment, generating pathological facilitators or aggravators. The most significant environmental effector resulting from senescent cells is the senescence-associated secretory phenotype (SASP), which is constituted by a strikingly increased expression and secretion of diverse pro-inflammatory cytokines. Careful investigation into the components of SASPs and their mechanism of action, may improve our understanding of the pathological backgrounds of age-associated diseases. In this review, we focus on the differential expression of SASP-related genes, in addition to SASP components, during the progress of senescence. We also provide a perspective on the possible action mechanisms of SASP components, and potential contributions of SASP-expressing senescent cells, to age-associated pathologies.

From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes

  • Byun, Hae-Ok;Lee, Young-Kyoung;Kim, Jeong-Min;Yoon, Gyesoon
    • BMB Reports
    • /
    • 제48권10호
    • /
    • pp.549-558
    • /
    • 2015
  • Cellular senescence is a process by which cells enter a state of permanent cell cycle arrest. It is commonly believed to underlie organismal aging and age-associated diseases. However, the mechanism by which cellular senescence contributes to aging and age-associated pathologies remains unclear. Recent studies showed that senescent cells exert detrimental effects on the tissue microenvironment, generating pathological facilitators or aggravators. The most significant environmental effector resulting from senescent cells is the senescence-associated secretory phenotype (SASP), which is constituted by a strikingly increased expression and secretion of diverse pro-inflammatory cytokines. Careful investigation into the components of SASPs and their mechanism of action, may improve our understanding of the pathological backgrounds of age-associated diseases. In this review, we focus on the differential expression of SASP-related genes, in addition to SASP components, during the progress of senescence. We also provide a perspective on the possible action mechanisms of SASP components, and potential contributions of SASP-expressing senescent cells, to age-associated pathologies.

Expression of Senescence-Associated Secretory Phenotype in Senescent Gingival Fibroblasts

  • Sangim Lee
    • 치위생과학회지
    • /
    • 제23권2호
    • /
    • pp.169-175
    • /
    • 2023
  • Background: Although microbial infection is direct cause of periodontal disease, various environmental factors influence the disease severity. Aging is considered a risk factor for oral diseases, with the prevalence of periodontal diseases increasing with age. Moreover, senescence-associated secretory phenotype (SASP) expressed in age-related diseases is a key marker of chronic inflammation and aging phenotypes. Therefore, this study aimed to understand the relevance of senescent cells to periodontal health and disease, investigate the possibility of regulating the expression of aging- and osteolysis-related factors in gingival fibroblasts, and investigate the effect of senescence induction in gingival fibroblasts on osteoclast differentiation in mouse bone marrow-derived macrophages (BMMs). Methods: After stimulation with 400 nM hydrogen peroxidase, human gingival fibroblasts (HGFs) were examined for senescence-associated β-galactosidase. Western blot and enzyme-linked immunosorbent assays were performed to assess the expression of SASP. Osteoclast formation was assessed in BMMs using a conditioned medium (CM) from hydrogen peroxide-stimulated HGFs. Osteoclastic differentiation was investigated using tartrate-resistant acid phosphatase (TRAP) staining and activity. Data analysis was performed using SPSS version 25.0. Results: The expression of senescence-related molecules, including p53, p16, and p21, and the expression of osteolytic factors, including IL-6, IL-8, and IL-17, were found to be significantly higher in the hydrogen peroxide-stimulated HGF than in the control group. Regarding the indirect effects of senescent gingival cells, the number of osteoclasts and TRAP activity increased according to the differentiation of BMM cultured in CM. Conclusion: Our results on the of between osteolytic factors and cellular senescence in gingival fibroblast cells helped to reveal evidence of pathological aging mechanisms. Furthermore, our results suggest that the development of novel therapies that target specific SASP factors could be an effective treatment strategy for periodontal disease.

Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes

  • Bang, Minji;Kim, Do Gyeong;Gonzales, Edson Luck;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.530-539
    • /
    • 2019
  • Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-${\beta}$-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including PhosphoHistone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.