• Title/Summary/Keyword: Semiconductor laser

Search Result 524, Processing Time 0.061 seconds

A Study on the Frequency-Output Power Stabilization of Semicondutor Laser for Heterodyne Optical Communication Systems (헤테로다인 광통신 방식을 위한 반도체 레이저의 주파수-출력 안정화에 관한 연구)

  • 홍완희;반재경;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.3
    • /
    • pp.204-210
    • /
    • 1986
  • In this paper, a new method is suggested to stabilize the frequency of semiconductor laser diode for heterodyne optical communication systems. In order to stabilize the frequency of semiconductor laser, the method of the injection current controal has been widely used, in which the laser frequency is locked to a F-P interferometer. By adding another servoloop to stabilize the output power of semiconductor laser, we could stabilize the laser frequency and the output power simultaneously and the frequency stability is improved by a factor of fice times.

  • PDF

레이저를 이용한 웨이퍼 다이싱 특성 분석

  • Lee Yong-Hyeon;Choe Gyeong-Jin;Yu Seung-Ryeol;Yang Yeong-Jin;Bae Seong-Chang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.251-254
    • /
    • 2006
  • In this paper, cutting qualifies and fracture strength of silicon dies by laser dicing are investigated. Laser micromachining is the non-contact process using thermal ablation and evaporation mechanisms. By these mechanisms, debris is generated and stick on the surface of wafer, which is the problem to apply laser dicing to semiconductor manufacture process. Unlike mechanical sawing using diamond blade, chipping on the surface and crack on the back side of wafer isn't made by laser dicing. Die strength by laser dicing is measured via the three-point bending test and is compared with the die strength by mechanical sawing. As a results, die strength by the laser dicing shows a decrease of 50% in compared with die strength by the mechanical sawing.

  • PDF

Analyses of Encryption Method for Chaos Communication Using Optical Injection Locked Semiconductor Lasers (반도체 레이저의 광 주입을 이용한 혼동 통신망의 암호화 기법 분석)

  • Kim Jung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.811-815
    • /
    • 2005
  • We theoretically studied synchronization of chaotic oscillation in semiconductor lasers with chaotic light injection feed-back induced chaotic light generated from a master semiconductor laser was injected into a solitary slave semiconductor laser. The slave laser subsequently exhibited synchronized chaotic output for a wide parameter range with strong injection and frequency detuning within the injection locking scheme. We also analytically examined chaos synchronization based on a linear stability analysis from the view point of synchronization based on a linear stability analysis from the view point of modulation response of injection locked semiconductor lasers to chaotic light signal.

Epoxy-based Interconnection Materials and Process Technology Trends for Semiconductor Packaging (반도체 패키징용 에폭시 기반 접합 소재 및 공정 기술 동향)

  • Eom, Y.S.;Choi, K.S.;Choi, G.M.;Jang, K.S.;Joo, J.H.;Lee, C.M.;Moon, S.H.;Moon, J.T.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.1-10
    • /
    • 2020
  • Since the 1960s, semiconductor packaging technology has developed into electrical joining techniques using lead frames or C4 bumps using tin-lead solder compositions based on traditional reflow processes. To meet the demands of a highly integrated semiconductor device, high reliability, high productivity, and an eco-friendly simplified process, packaging technology was required to use new materials and processes such as lead-free solder, epoxy-based non cleaning interconnection material, and laser based high-speed processes. For next generation semiconductor packaging, the study status of two epoxy-based interconnection materials such as fluxing and hybrid underfills along with a laser-assisted bonding process were introduced for fine pitch semiconductor applications. The fluxing underfill is a solvent-free and non-washing epoxy-based material, which combines the underfill role and fluxing function of the Surface Mounting Technology (SMT) process. The hybrid underfill is a mixture of the above fluxing underfill and lead-free solder powder. For low-heat-resistant substrate applications such as polyethylene terephthalate (PET) and high productivity, laser-assisted bonding technology is introduced with two epoxy-based underfill materials. Fluxing and hybrid underfills as next-generation semiconductor packaging materials along with laser-assisted bonding as a new process are expected to play an active role in next-generation large displays and Augmented Reality (AR) and Virtual Reality (VR) markets.

The study of characteristic III-V compound semiconductor by He-Ne laser (III-V 화합물반도체에서의 He-Ne Laser를 활용한 광 특성 연구)

  • Yu, Jae-Yong;Choi, K.S.;Choi, Son Don
    • Laser Solutions
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2013
  • The optical properties of III-V compound semiconductor structure was investgated by photoreflectance (PR). The results show two signals at 1.42 and 1.73eV. These are attributed to the bandgap energy of GaAs, AlGaAs, respectively. Also, AlGaAs region showed weak signal. This signal is attributed to carbon or si defect.

  • PDF

Circuit Models for Low Frequency Modulation Characteristics of Semiconductor Lasers (반도체 레이저의 저주파 변조특성의 회로 모델)

  • 소준호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.214-217
    • /
    • 1989
  • The most attractive feature of semiconductor lasers as sources for coherent optical communication system is the ability to produce frequency modulation by modulation of the bias current. The frequency deviation of semiconductor lasers under direct modulation depends on the laser structure and modulation frequency. This paper describes a circuit modeling techniques for the directly frequency modulated CSP (Channeled Substrated Planner) semiconductor laser. Predictions from this model are compared with the other published results of sinusoidal frequency modulation below than 1 GHz.

  • PDF

Study on Analysis of Optical Deflection of Laser Scattering Based on Rayleigh Criterion for Crystalline Silicon Wafer in Solar Cell (태양전지용 결정질 실리콘 웨이퍼에서의 레일리기준 기반 레이저산란의 광편향 분석에 관한 연구)

  • Kim, Gyung-Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, optical deflection of laser scattering has been investigated based on Rayleigh criterion for crystalline silicon wafer in solar cell. A laser scattering mechanism is newly designed using light scattering properties in silicon wafer. Intensity distributions of laser scattering are different, depending on the incident angle of laser computed from Rayleigh criterion. In case of the incident angle satisfied with the criterion, they are asymmetric. Also, their specular reflection angle is shifted to unpredicted ones. These phenomena are in accordance with previous theories of laser scattering. The optical deflection of laser scattering is experimentally identified with the designed laser scattering mechanism. Its mathematical model is presented from the geometric relationship of laser scattering. It is shown that the optical deflection of laser scattering agree with the presented model, exclusive of grazing angles which is satisfied with Rayleigh criterion.

Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts

  • Choi, Eun-Jeong;Yim, Ju-Young;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.105-110
    • /
    • 2010
  • Purpose: It has been reported that low-level semiconductor diode lasers could enhance the wound healing process. The periodontal ligament is crucial for maintaining the tooth and surrounding tissues in periodontal wound healing. While low-level semiconductor diode lasers have been used in low-level laser therapy, there have been few reports on their effects on periodontal ligament fibroblasts (PDLFs). We performed this study to investigate the biological effects of semiconductor diode lasers on human PDLFs. Methods: Human PDLFs were cultured and irradiated with a gallium-aluminum-arsenate (GaAlAs) semiconductor diode laser of which the wavelength was 810 nm. The power output was fixed at 500 mW in the continuous wave mode with various energy fluencies, which were 1.97, 3.94, and 5.91 $J/cm^2$. A culture of PDLFs without laser irradiation was regarded as a control. Then, cells were additionally incubated in 72 hours for MTS assay and an alkaline phosphatase (ALPase) activity test. At 48 hours post-laser irradiation, western blot analysis was performed to determine extracellular signal-regulated kinase (ERK) activity. ANOVA was used to assess the significance level of the differences among groups (P<0.05). Results: At all energy fluencies of laser irradiation, PDLFs proliferation gradually increased for 72 hours without any significant differences compared with the control over the entire period taken together. However, an increment of cell proliferation significantly greater than in the control occurred between 24 and 48 hours at laser irradiation settings of 1.97 and 3.94 $J/cm^2$ (P<0.05). The highest ALPase activity was found at 48 and 72 hours post-laser irradiation with 3.94 $J/cm^2$ energy fluency (P<0.05). The phosphorylated ERK level was more prominent at 3.94 $J/cm^2$ energy fluency than in the control. Conclusions: The present study demonstrated that the GaAlAs semiconductor diode laser promoted proliferation and differentiation of human PDLFs.

Characteristics of High Speed Optical Transmitter Module Fabricated by Using Laser welding Technique (레이저웰딩기술을 이용한 고속 광통신용 송신모듈 제작 및 특성 연구)

  • Kang, Seung-Goo;Song, Min-Kyu;Jang, Dong-Hoon;Pyun, Kwang-Eui
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.552-554
    • /
    • 1995
  • In long-haul high speed optical communications, the distance between a transmitter and a receiver depends on the amount of light coupled to a single mode optical fiber from the laser diode(LD) as well as the LD characteristic itself. And the transmitter module must have long lifetime. high reliability, and even simple structure. Such points have induced laser welding technique to be a first choice in opto-electronic module packaging because it can provide strong weld joint in a short time with very small coupling loss. In this paper, packaging considerations and characteristics for high speed LD modules are discussed. They include optical path design factors for larger aligning tolerance, and novel laser welding processes for component assembly. For low coupling loss after laser welding processes, the optical path for optimum coupling of a single mode optical fiber into the LD chip was designed with the GRIN lens system providing sufficiently large aligning tolerance both in the radial and axial directions. The measured sensitivity of the LD module was better than -33.7dBm(back to back) at a BER of $10^{-10}$ with a 2.5Gbps NRZ $2^{23}-1$ PRBS.

  • PDF