• Title/Summary/Keyword: Semi-solid state

Search Result 98, Processing Time 0.027 seconds

Pre-processing System for Converting Shell to Solid at Selected Weldment in Shell FE Model (선체 Shell FE 모델 내 용접부의 Solid 요소변환 자동화 시스템)

  • Yoo, Jinsun;Ha, Yunsok
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.11-15
    • /
    • 2016
  • FE analyses for weldment of ship structure are required for various reasons such as stress concentration for bead tow, residual stress and distortion after welding, and hydrogen diffusion for prediction of low temperature crack. These analyses should be done by solid element modeling, but most of ship structures are modeled by shell element. If we are able to make solid element in the shell element FE modeling it is easily to solve the requirement for solid elements in weld analysis of large ship structures. As the nodes of solid element cannot take moments from nodes of shell element, these two kinds of element cannot be used in one model by conventional modeling. The PSCM (Perpendicular shell coupling method) can connect shell to solid. This method uses dummy perpendicular shell element for transferring moment from shell to solid. The target of this study is to develop a FE pre-processing system applicable at welding at ship structure by using PSCM. We also suggested glue-contact technique for controlling element numbers and element qualities and applied it between PSCM and solid element in automatic pre-processing system. The FE weldment modeling through developed pre-processing system will have rational stiffness of adjacent regions. Then FE results can be more reliable when turn-over of ship-block with semi-welded state or ECA (Engineering critical assessment) of weldment in a ship-block are analyzed.

Measurement of Lattice Parameter of Primary Si crystal in Rheocast Hypereutectic Al-Si Alloy by Convergent Beam Electron Diffraction Technique (수렴성빔 전자회절법을 이용한 리오캐스팅시킨 과공정 Al-Si합금에서 실리콘초정의 격자상수 측정)

  • Lee, Jung-Ill;Kim, Gyeung-Ho;Lee, Ho-In
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.99-107
    • /
    • 1995
  • The morphological changes of primary solid particles as a function of process time on hypereutectic Al-15.5wt%Si alloy during semi-solid state processing with a shear rate of $200s^{-1}$ are studied. In this alloy, it was observed that primary Si crystals are fragmented at the early stage of stirring and morphologies of primary Si crystals change from faceted to spherical during isothermal shearing for 60 minutes. To understand the role of Al dissolved in the primary Si crystal by shear stress at high temperature, lattice parameters of the primary Si crystals are determined as a variation of high order Laue zone(HOLZ) line positions measured from convergent beam electron diffraction(CBED) pattern. The lattice parameter of the primary Si crystal in the rheocast Al-15.5wt%Si alloy shows tensile strain of about 5 times greater than that of the gravity casting. Increase of the lattice parameter by rheocasting is due to the increased amount of Al dissolved in the primary Si crystal accelerated by shear stress at high temperature. The amounts of solute Al in the primary Si crystal are measured quantitatively by EPMA method to confirm the CBED analysis.

  • PDF

Flexible Mold Production Process for Using the PCM (PCM을 활용한 가변형 몰드 제작 프로세스)

  • Kim, Taekoo;Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.272-273
    • /
    • 2014
  • Existing the free-form concrete segments (FCS) mold is produced by state of solid such as steel, wood, Styrofoam that can not be recycled. Using FCS mold result in delay on schedule and decrease of productivity because it consists of irregular curved variety and it requires more time than fixed mold. Thus, FCS mold should be developed which can reduce the costs and also it can be used as semipermanent. The aim of this study is to suggest of flexible mold production process for using the phase change materials(PCM). PCM is maintain that its solid state at low temperature but it changes phase to liquid state by heating. PCM is suitable material for flexible mold due to change of phase in relatively high temperature compare to other phase change materials such as water. Flexible mold is possible that reuse semi-permanently made by PCM. Thus, this study is proposed the process of flexible mold production for using the PCM. The study results will be used as the basic theory for studies on production and installation of FCS.

  • PDF

Microstructural Changes during Semi-solid State in Hypereutectic Al-Si Alloy (과공정 Al-Si 합금의 반고상 재가열시 미세조직 변화)

  • Kim, In-Joon;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.541-549
    • /
    • 1998
  • Microstructural characteristics of hypereutectic Al-Si alloys during reheating at semi-solid temperature have been investigated. The size and morphology of primary Si particles in wedge-type mold-cast ingot has been compared with hot-rolled sheet and Si particulate reinforced Al composite. Effects of P and Sr addition on the morphological changes of primary Si particles have been also investigated. Observation of the solidification microstructures of the wedge-type mold-cast ingot at different cooling rates showed that alloying elements such as P and Sr affect the morphology of Si particles, especially in the area solidified at a slow cooling rate. Negligible change in the size of primary crystals was observed after reheating experiment, but ${\alpha}-halo$ formed around the Si particles and fine particles of Si precipitated in the surrounding area of the Si particles. In addition, there seemed to be no coarsening with increasing of holding time and the region of ${\alpha}-halo$ being decreased. Nucleation and recrystallization was accelerated with addition of alloying elements during hot rolling resulting in a decrease of primary Si particle size. In the case of extruded specimens, morphological change of primary Si particles was not observed after reheating. No ${\alpha}-halo$ formation was observed in Si reinforced Al composite because of the oxide film formed on the Si particles which acted as a diffusion barrier between substrate and the primary Si particles.

  • PDF

Synthesis, Optical and Electrical Studies of Nonlinear Optical Crystal: L-Arginine Semi-oxalate

  • Vasudevan, P.;Sankar, S.;Jayaraman, D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.128-132
    • /
    • 2013
  • L-Arginine semi-oxalate (LASO) single crystal has been grown by solution growth technique at room temperature. The crystal structure and lattice parameters were determined for the grown crystal by single crystal X-ray diffraction studies. Photoluminescence studies confirm the violet fluorescence emission peak at 395 nm. Optical constants like band gap, refractive index, reflectance, extinction coefficient and electric susceptibility were determined from UV-VIS-NIR spectrum. The dielectric constant, dielectric loss and ac conductivity of the compound were calculated at different temperatures and frequencies to analyze the electrical properties. The solid state parameters such as plasma energy, Penn gap, Fermi energy and polarizability were calculated to analyze second harmonic generation (SHG). Nonlinear optical property was discussed to confirm the SHG efficiency of the grown crystal.

Single Bubble Dynamic Behavior in AL2O3/H2O Nanofluid on Downward-Facing Heating Surface

  • Wang, Yun;Wu, Junmei
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.915-924
    • /
    • 2016
  • After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% $Al_2O_3/H_2O$) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

Contact Fatigue Life Prediction under Elliptical Elastohydrodynamic Lubrication (타원접촉 EHL 상태에서의 접촉피로수명 예측)

  • Kim, Tae-Wan;Lee, Sang-Don;Koo, Young-Pil;Cho, Yang-Joo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.320-328
    • /
    • 2006
  • In this study, the simulation of rolling contact fatigue based on stress analysis is conducted under Elastohydrodynamic Lubrication state. To predict a crack initiation life accurately, it is necessary to calculate contact stress and subsurface stresses accurately. Contact stresses are obtained by contact analysis of a semi-infinile solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. And a numerical algorithm using Newton-Rapson method was constructed to calculate the Elastohydrodynamic lubrication pressure. Based on these stress values, several multiaxial high-cycle fatigue criteria are used and the critical loads corresponding to fatigue limits are calculated.

STEADY-STATE TEMPERATURE ANALYSIS TO 2D ELASTICITY AND THERMO-ELASTICITY PROBLEMS FOR INHOMOGENEOUS SOLIDS IN HALF-PLANE

  • GHADLE, KIRTIWANT P.;ADHE, ABHIJEET B.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.93-102
    • /
    • 2020
  • The concept of temperature distribution in inhomogeneous semi-infinite solids is examined by making use of direct integration method. The analysis is done on the solution of the in-plane steady state heat conduction problem under certain boundary conditions. The method of direct integration has been employed, which is then reduced to Volterra integral equation of second kind, produces the explicit form analytical solution. Using resolvent- kernel algorithm, the governing equation is solved to get present solution. The temperature distribution obtained and calculated numerically and the relation with distribution of heat flux generated by internal heat source is shown graphically.

Culture and Regeneration of Populus alba × glandulosa Leaf Protoplasts Isolated from in vitro Cultured Explant (현사시나무 기내배양(器內培養) 엽육조직(葉肉組織)에서 분리(分離)된 원형질체(原形質体) 배양(培養) 및 식물체(植物体) 재분화(再分化))

  • Park, Young Goo;Son, Sung Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.2
    • /
    • pp.208-215
    • /
    • 1988
  • The leaf mesophyll protoplasts of Populus alba ${\times}$ glandulosa were isolated from leaf of plantlet in vitro and cultured for plant regeneration. The MS medium (minus $NH_4NO_3$) with 0.5 mg/l BAP and 2.0 mg/l 2, 4-D showed the moderate frequency of dividing protoplasts cultured by the liquid plating method during the first week of culture. The percentage of colony formation was revealed the highest frequency by the gauze contained semi-solid agar plating method after 5 weeks cultured. Ridding out the gauze, the micro-callus was formed on the same semi-solid medium in 8 weeks after protoplasts culture. For proliferation of callus, mini-callus was transferred on the MS solid medium with 0.5 mg/l 2, 4-D and 0.1 mg/l BAP 12 weeks after culture. Shoot regeneration occurred when the calli derived from protoplasts were cultured on MS medium with 1.0 mg/l zeatin and such shoots could be readily rooted on the one half strengthen MS medium with non-phytohormone. Rooting shoots were planted in green-house 22 weeks after protoplast culture.

  • PDF

Microstructural evolution of rheocast Al-6.2wt.%Si alloy with isothermal stirring (Al-6.2wt.%Si 합금의 등온교반시간에 따른 미세조직변화)

  • Lee, Jung-Ill;Park, Ji-Ho;Kim, Gyeung-Ho;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.514-522
    • /
    • 1995
  • The microstructural evolution with isothermal stirring during semi-solid state processing of hypoeutectic Al-6.2wt%Si alloy was studied. Substructure of the individual primary solid particle in the slurry was investigated through transmission electron microscopy(TEM). Formation of subgrain boundaries on the rheocast Al-6.2wt%Si alloy is observed and the misorientation between the grains is shown typically under 2 degrees by analyzing selected area diffraction (SAD) and convergent beam electron diffraction (CBED) patterns. The existence of high angle grain boundaries are also observed in the alloy. Based upon these observations, mechanisms for the primary particles fragmentation are considered. With isothermal stirring, the dislocation density increases, and the evolution of dislocation cell structure takes place, which is interpreted as a process of achieving uniform deformation by dynamic recovery under applied shear stress.

  • PDF