• 제목/요약/키워드: Semi-solid state

검색결과 98건 처리시간 0.019초

과공정 Al- Si 합금의 반응고 교반시 초정 Si 형상에 미치는 교반조건 및 개량원소 첨가 영향 (Effects of Stirring Condition and Refining Element Addition on the Primary Si Particle Morphology of Hypereutectic Al-Si Alloys Semi-Solid State Processing)

  • 김인준;김도향
    • 한국주조공학회지
    • /
    • 제18권5호
    • /
    • pp.474-480
    • /
    • 1998
  • Microstructural characteristics of semi-solid state processed hypereutectic Al-Si alloys have been investigated. Main concern of the present study is to investigate the effects of P and Sr addition on the size and morphology change of the primary Si particles. Refinement of the primary Si particles was observed with the addition of P and Sr at the early stage of semi-solid state processing, but such a refining effects became negligible resulting in Si particles with a near-spherical morphology with continuous stirring. This implies that the microstructural transformation mechanism became more dependent to stirring effects than to the alloying effects during semi-solid state processing. Brittle fracture and agglomeration were proposed as the mechanisms for microstructural alterations during semi-solid state processing.

  • PDF

반용융상태에서 재료의 변형거동에 관한 유한요소해석 (Finite Element Analysis of r Deformation Behavior of Materials at Semi-Solid State)

  • 윤종훈;김낙수;김헌영;김중재;임용택
    • 소성∙가공
    • /
    • 제6권4호
    • /
    • pp.319-328
    • /
    • 1997
  • A flow stress involving strain, solid fraction, and breakage ratio, and solid fraction updating algorithm were proposed to depict the deformation behavior of materials at the semi-solid state. In case of isothermally simple upsetting of Sn-15%Pb alloy at the semi-solid state, by comparing the results of finite element analysis with the existing experimental results, the reliability of both the developed flow stress and updating algorithm were investigated. It was found that the verified program can effectively be used in the rigid-viscoplastic finite element analysis of the semi-solid forging processes.

  • PDF

반용융 복합압출 제품의 성형실험 및 유한요소해석 (Finite Element Analysis and Experiment of Combined Extrusion in Semi-Solid State)

  • 최재찬;박준홍;김병민
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.313-318
    • /
    • 1999
  • Many products related to automobile and airplane industry have been manufactured by semi-solid forging. In this paper finite element analysis of product by combined extrusion in semi-solid state was performed and its experimental verification using A356 was conducted. distribution of solid fraction was analyzed and compared with the experimental microstructure in the product. In addition, distribution of temperature in the product was analysed by finite element method.

  • PDF

균일가열법으로 제조한 반용융 A390합금의 미세조직 및 성형성 (Microstructure and Formability of Semi-solid A390 Alloys made by uniform heating)

  • 엄정필;장동훈;김득규;윤병은;임수근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.160-173
    • /
    • 1997
  • Microstructure of hypereutectic Al-17wt.% Si alloy, fabricated by mechanical stirring and by reheating at semi-solid state, was investigated by optical microscope. Flow behavior semi-solid metal also was investigated at diffentent mould temperatures 280$^{\circ}C$, 290$^{\circ}C$ and 300$^{\circ}C$. Size of silicon particles were increased over 100$\mu\textrm{m}$ during solidification as a result of stirring. It is considered as microstructural coarsening by bonding between neighbouring primary silion particles during stirring of slurry. In case of reheating at semi-solid state, however, primary silicon particle was not increased at size of 40$\mu\textrm{m}$ and nearly spherical aluminum solde particle also could be obtained uniformly in distribution. The fludity of Al-17wt.% Si alloys at semi-solid state was improved when solid fraction was 0.7 at mould temperature of 300$^{\circ}C$ than other conditions.

  • PDF

AA 2014 알루미늄 합금의 고상율에 따른 미세조직 및 반응고 변형 거동 (Microstructures and Deformation Behavior of AA 2014 Aluminum Alloys in the Semi-Solid State)

  • 한도석
    • 한국주조공학회지
    • /
    • 제37권5호
    • /
    • pp.157-163
    • /
    • 2017
  • In the present study, the microstructural evolution and deformation behavior of AA 2014 aluminum alloys with different microstructures in a semi-solid state were investigated. For a given alloy, applied load and deformation time, the measured strain was higher at a higher temperature, indicative of a lower solid fraction. When a large proportion of the liquid was present as intragranular droplets, the alloy would not as easily deform because the effective liquid fraction between the solid grains had decreased. Greater deformation was achieved with higher grain boundary misorientations due to the enhanced wetting of the grain boundaries with liquid. A semi-empirical constitutive model is proposed for semi-solid deformation under the conditions in the present study. The mechanism of semi-solid deformation incorporates the initial flow of the liquid in the early stages of deformation, followed by a more gradual increase in the strain due to deformation by grain sliding accompanied by self-diffusion in the solid grains.

고상입자의 분리현상을 고려한 Semi-Solid 알루미늄재료의 변형해석 (Deformation Analysis of Semi-Solid Aluminum Material Considering Seperation Phenomena of Solid Particles)

  • 최진석;강충길;김기훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.98-105
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can very from dendritic to globular. The estimation of behaviour characteristic in the compression simulation with seim-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for compression process is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process considering soldification phenomena is performed to the isothermal conditions of two dimensional problems. To analysis of compression process by using semi-solid materials, a new stress-strain relationship is described, and compression analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for compression force and ram displacement will be compared to experimental data.

  • PDF

Yield and Compression Behavior of Semi-Solid Material by Upper-Bound Method

  • Park, Joon-Hong;Kim, Chul;Kim, Byung-Min;Park, Jae-Chan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.23-29
    • /
    • 2001
  • The compression behavior of semi-solid materials is studied from a viewpoint of yield criteria and analysis methods. To describe the behavior of materials in semi-solid state, several theories have been proposed by extending the concept of plasticity of porous compressible materials. In the present work, the upper-bound method and the finite element method are used to model the simple compression process using yield criteria of Kuhn and Doraivelu. Segregation between solid and liquid which cause defect of product is analysed for Sn-15%Pb and A356 alloys during deformation in semi-solid state. The comparison of analyses is made according to yield criteria and analysis methods. In addition, the analysis result for semi-solid dendritic Sn-15%Pb alloy is compared with the experimental result of Charreyron et al..

  • PDF

반고상 가공과 공정 Al-Si 합금에서 $\alpha$-halo의 형성 ($\alpha$-halo formation in semi-solid state processed hypereutectic Al-Si alloy)

  • 김인준;김도향
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.183-195
    • /
    • 1997
  • The micorstructural characteristics, particularly $\alpha$-halo formation, in semi-solid state processed hypereutectic Al-Si alloy was investigated. The microstructural changes during reheating of wedge type mold cast ingot, hot-rolled sheet, and Si particulate reinforced Al composite was compared with those occurred during stirring of semi-solid state hypereutectic alloy. In the case of semi-solid state reheating of wedge type ingot and hot-rolled sheet, fine particles of Si as well as $\alpha$-halo formed after heat treatment. Although there seemed to be no coarsening with variations of holding time, the region of $\alpha$-halo decreased due to homogenization. Nucleation and recrystallization was accelerated with the addition of alloying elements during hot rolling resulting in primary Si particle size decrease and $\alpha$-halo formation. In the case of extruded specimens, very little morphological change of reinforcing Si particles was observed. Almost no $\alpha$-halo formed during reheating because of the oxide film formed on the reinforcing Si particles which acted as a diffusion barrier between the matrix and the primary Si particles.

  • PDF

반용융 알루미늄 재료의 압축성형시 변형율속도가 미시적 거동에 미치는 영향 (The Effect of Strain Rate on Macroscopic Behaviour in Compression Forming of Semi-Solid Aluminum Alloy)

  • 강충길;김기훈
    • 소성∙가공
    • /
    • 제6권4호
    • /
    • pp.338-345
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress stage and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for material behaviour for variation of strain rate. Therefore, to investigate the effect of compression speed on deformation of aluminum alloy with globular microstructure, the compression test for semi-solid aluminum alloy with controlled solid fraction is perform by material test system which is attracted with furance. The behavior of semi-solid aluminum alloy were discussed for the various solid fraction and die speed. The material constants in stress-strain were are also proposed.

  • PDF

반용융 다이캐스팅 공정에 있어서 플런저 팁의 형상이 성형성에 미치는 영향 (The Effect of Plunger Tip Shape on the Formability in Semi-Solid Die Casting Process)

  • 서판기;손영익;강충길
    • 소성∙가공
    • /
    • 제11권4호
    • /
    • pp.312-322
    • /
    • 2002
  • In this study, an innovative semi-solid die casting technology to replace heavier cast iron compressor parts with lightweight aluminum castings was proposed, and the application possibility for home-appliance component was investigated. The most important factors regarding the semi-solid die casting process are the reheating process of the raw materials to the semi-solid state, specifications of the forming machine, the optimal injection conditions and die design. Materials used in this study were A3S7 and hSn alloys fabricated by the electromagnetic stirring process. The optimal injection conditions for semi-solid die casting process were Presented with the reheating conditions of the semi-solid materials. To investigate the effect of plunger tip shape on the formability and mechanical properties in semi-solid die casting process for complicated shape part, two kinds of plunger tip shape with long and short plunger tip taper are proposed.