• Title/Summary/Keyword: Semi-pilot Biofilter

Search Result 3, Processing Time 0.016 seconds

Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 1. Performance of Biofilter Packed with Media with Immobilized Thiobacillus sp. IW and Return-sludge (황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 1. Thiobacillus sp. IW 및 반송슬러지를 고정한 담체를 충전한 바이오필터 운전)

  • Lee, Eun Ju;Park, Hyeri;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.568-574
    • /
    • 2013
  • A semi-pilot biofilter packed with media with immobilized Thiobacillus sp. IW and return sludge, was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). At the incipient and middle stages of a semi-pilot biofilter operation, the hydrogen sulfide-removal efficiency behaves regardless of an inlet-load of ammonia. However, the ammonia-removal efficiency decreased as an inlet-load of hydrogen sulfide increased. Nevertheless, at the final stage of the semi-pilot biofilter operation, the ammonia-removal efficiency was not affected by the increase of hydrogen sulfide-inlet load. It is attributed to that a serious acidification of semi-pilot biofilter-media did not occur due to continuous injection of buffer solution at the final stage of the semi-pilot biofilter operation. When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by semi-pilot biofilter, the maximum elimination capacities of hydrogen sulfide and ammonia turned out to be ca. 58 and $30g/m^3/h$, respectively. These maximum elimination capacities were estimated to be ca. 39 and 46% less than those for lab-scaled biofilter-separate elimination of hydrogen sulfide and ammonia, respectively. Thus, for the simultaneous biofilter-treatment of hydrogen sulfide and ammonia, the maximum elimination capacity of ammonia decreased by 7% more than that of hydrogen sulfide.

Semi-pilot Scaled Hybrid Process Treatment of Malodorous Waste Air: Performance of Hybrid System Composed of Biofilter Packed with Media Inoculated with Thiobacillus sp. IW and Return-sludge and Photocatalytic Reactor (악취폐가스의 세미파일럿 규모 하이브리드 공정 처리: Thiobacillus sp. IW 및 반송슬러지를 접종한 담체를 충전한 바이오필터와 광촉매반응기로 구성된 하이브리드시스템의 운전)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.191-198
    • /
    • 2014
  • A semi-pilot hybrid system composed of a photocatalytic reactor and a biofilter was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by a biofilter system, its performance of ammonia removal was much more poor than that by a biofilter system treating waste air containing only ammonia, unlike its performance of hydrogen sulfide removal. For semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia turned out to be ca. 83 and 65%, respectively. Therefore, for semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia was increased by ca. 4 and 30%, respectively, compared to those of semi-pilot biofilter system (control). In addition, the maximum elimination capacities of hydrogen sulfide and ammonia for semi-pilot hybrid system turned out to be ca. 60 and $37g/m^3/h$, respectively. These maximum elimination capacities of hydrogen sulfide and ammonia were estimated to be ca. 9.1% and ca. 23.3% greater than those for semi-pilot biofilter system (control), respectively. Therefore, the semi-pilot hybrid system contributed the enhancement of removal efficiency and the maximum elimination capacity of ammonia in a higher degree than that of hydrogen sulfide, compared to the semi-pilot biofilter system.

Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 2. Performance of Biofilter Packed with Media Inoculated with a Consortium of Separated Microbes (황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 2. 분리 미생물들을 접종한 담체를 충전한 바이오필터 운전)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.240-246
    • /
    • 2014
  • A semi-pilot biofilter inoculated with the microbes consortium of Bacillus cereus DAH-1056 and Arthrobacter sp. KDE-0311 was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia. When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by semi-pilot biofilter inoculated with Thiobacillus sp. IW and return-sludge, the removal efficiencies of hydrogen sulfide and ammonia were ca. 80% and ca. 50%, respectively. On the other hand, in this study, the removal efficiencies of hydrogen sulfide and ammonia were ca. 90% and ca. 60%, respectively. Therefore, the removal efficiencies of hydrogen sulfide and ammonia were enhanced by ca. 13% and 20%, respectively, compared to the semipilot biofilter inoculated with Thiobacillus sp. IW and return-sludge. In addition, in this study, the maximum elimination capacities of hydrogen sulfide and ammonia were enhanced by ca. 15% ($8g/m^3/h$) and 10~17% ($3{\sim}5g/m^3/h$), respectively. In this study, it was observed either that in case of even a same inlet load of hydrogen sulfide, a higher concentration of hydrogen sulfide causes more difficulties in treating ammonia containing in waste air than a lower one, or that in case of even a same inlet load of ammonia, a lower concentration of ammonia results in higher removal efficienciy and elimination capacity than a higher one. Even though hydrogen sulfide and ammonia were treated simultaneously by a biofilter in this study, the maximum elimination capacity of hydrogen sulfide in this study exceeded or was similar to that in previous study of biofilter treating only hydrogen sulfide. In addition, this study showed the higher maximum elimination capacity of ammonia than other previous investigation of biofilter treating hydrogen sulfide and ammonia simultaneously.