• Title/Summary/Keyword: Semi-empirical equation

Search Result 56, Processing Time 0.024 seconds

Towards grain-scale modelling of the release of radioactive fission gas from oxide fuel. Part I: SCIANTIX

  • Zullo, G.;Pizzocri, D.;Magni, A.;Van Uffelen, P.;Schubert, A.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2771-2782
    • /
    • 2022
  • When assessing the radiological consequences of postulated accident scenarios, it is of primary interest to determine the amount of radioactive fission gas accumulated in the fuel rod free volume. The state-of-the-art semi-empirical approach (ANS 5.4-2010) is reviewed and compared with a mechanistic approach to evaluate the release of radioactive fission gases. At the intra-granular level, the diffusion-decay equation is handled by a spectral diffusion algorithm. At the inter-granular level, a mechanistic description of the grain boundary is considered: bubble growth and coalescence are treated as interrelated phenomena, resulting in the grain-boundary venting as the onset for the release from the fuel pellets. The outcome is a kinetic description of the release of radioactive fission gases, of interest when assessing normal and off-normal conditions. We implement the model in SCIANTIX and reproduce the release of short-lived fission gases, during the CONTACT 1 experiments. The results show a satisfactory agreement with the measurement and with the state-of-the-art methodology, demonstrating the model soundness. A second work will follow, providing integral fuel rod analysis by coupling the code SCIANTIX with the thermo-mechanical code TRANSURANUS.

Development of an energy and efficiency calibration method for stilbene scintillators

  • Kim, Chanho;Kim, Jaehyo;Hong, Wooseong;Yeom, Jung-Yeol;Kim, Geehyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3833-3840
    • /
    • 2022
  • A method for calibrating the energy scale and detection efficiency of stilbene scintillators is presented herein. This method can be used to quantitatively analyze the Compton continuum of gamma-ray spectra obtained using such scintillators. First, channel-energy calibration was conducted by fitting a semi-empirical equation for the Compton continuum to the acquired energy spectrum and a new method to evaluate the intrinsic detection efficiency, called intrinsic Compton efficiency, of stilbene scintillators was proposed. The validity of this method was verified by changing experimental conditions such as the number of sources being measured simultaneously and the detector-source distance. According to the energy calibration, the standard error for the estimated Compton edge position was ±1.56 keV. The comparison of the intrinsic Compton efficiencies calculated from the single- and two-source spectra showed that the mean absolute difference and the mean absolute percentage difference are 0.031 %p and 0.557%, respectively, demonstrating reasonable accuracy of this method. The feasibility of the method was confirmed for an energy range of 0.5-1.5 MeV, showing that stilbene scintillators can be used to quantitatively analyze gamma rays in mixed-radiation fields.

Comparative Evaluation on the Deriving Method of the Heat Transfer Coefficient of the C-D Nozzle (축소 확대 노즐의 열전달 해석을 위한 열전달 계수 계산 및 검증)

  • Noh, Tae Won;Roh, Tae-Seong;Lee, Hyoung Jin;Lee, Hyunseob;Yoo, Phil Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • The heat transfer coefficient on the wall, which is used as a boundary condition in the thermal analysis of general contract-divergent supersonic nozzles, affects the thermal analysis accuracy of the entire nozzle. Accordingly, many methods of deriving a heat transfer coefficient have been proposed. In this study, the accuracy of each method was compared. For this purpose, the heat transfer coefficients were calculated through theoretical-based analogy methods, semi-empirical equations, and CFD simulations for the previously performed heat transfer experiment with an isothermal wall and compared with the experimental results. The results show that the Prandtl-Taylor analogy methods and the CFD results with the k-ω SST turbulence model were in good agreement with the experimental results. Furthermore, the Modified Bartz empirical formula showed an overall over-prediction tendency.

Semi-Empirical Prediction of Crack Width of the Strengthened Bridge Deck with External Bonding Plastic (외부부착 보강된 교량 바닥판 균열폭의 반경험적인 예측)

  • 심종성;오홍섭
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.231-238
    • /
    • 2002
  • Dry shrinkage md temperature change cause to develope concrete bridge decks on main girders have initial unidirectional cracks in longitudinal or transverse direction. As they receive traffic loads, the crack gradually propagate in different directions depending on the concrete dimension and reinforcement ratio. Since existing equations that predict crack width are mostly based on the one directional bond-slip theory, it is difficult to determine the actual crack width of a bridge deck with varying the spacing of rebar or strengthening material and to estimate the improvement rate in serviceability of the strengthened bridge deck. In this study, crack propagation mechanism is identified based on the test results and a new crack prediction equation is proposed for evaluation of serviceability. Although more accurate results are derived using the proposed equation, the extent of error is increased as the strain of the rebar or the strengthening material increases after the yielding of rebar Therefore, further research is required to better predict the crack width after the rebar yields under fatigue loading condition.

Direct Strength Evaluation of the CVD SiC Coating of TRISO Coated Fuel Particle with Micro Hemi Spherical Shell Configuration (마이크로 반구 쉘 형상의 화학증착 탄화규소 TRISO 코팅층의 파괴강도 직접평가)

  • Lee, Hyeon-Keun;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.368-374
    • /
    • 2007
  • CVD-SiC coating has been introduced as a protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to its excellent mechanical stability at high temperature. In order to prevent the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. It is needed to develop a new simple characterization technique to evaluate the mechanical properties of the coating layer as a pre-irradiation step. In present work, direct strength measurement method with the specimen of hem i-spherical shell configuration was suggested. The indentation experiment on a hemisphere shell with a plate indenter was conducted. The fracture strength of the coating layer is related with the critical load for radial cracking of the shell. The finite element analysis was used to drive the semi-empirical equation for the strength measurement. The SiC hemispherical shells were successfully recovered from the section-grinding of TRISO coated particle and successive heat treatment in air. The strength of CVD-SiC coating layer was evaluated from the experimentally measured critical load during the indentation on SiC hemisphere shell. Weibull diagram of fracture strength was also constructed. This study suggested a new strength equation and experimental method to measure the fracture strength of CVD-SiC coating of TRISO coated fuel particles.

Interaction between Flexible Buried Pipe and Surface Load

  • Yoo, Chung-Sik;Chung, Suk-Won;Lee, Kwang-Myung;Kim, Joo-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.83-97
    • /
    • 1999
  • This paper presents the results of a parametric study on the interaction between buried pipes and surface load using the finite element method of analysis. A series of laboratory model tests were also performed in order to validate the adopted finite element model and to capture essential features of the physical behavior of buried pipes subjected to surface load. In the parametric study, a wide range of boundary conditions were analyzed with emphasis on the response of the buried pipes to surface load. The results of analysis such as contact stress distribution at the soil/pipe interface and axial thrust of the pipe were thoroughly analyzed, and a database on the response of buried pipe under surface load was established for future development of a semi-empirical design/analysis method. The results indicated that the degree of interaction between buried pipes and surface load significantly varies with the vertical and lateral location of pipe with respect to surface load, and that the current design method, which does not consider soil-structure interaction, cannot correctly capture the pipe response to surface loading. Furthermore, based on the results of analysis, a semi-empirical equation was suggested, which estimates the maximum pipe thrust due to surface load for flexible buried pipes.

  • PDF

Relationship between Hydraulic Conductivity and Electrical Conductivity in Sands (사질토의 투수계수와 전기전도도 간의 상관관계)

  • Kim, Jinwook;Choo, Hyunwook;Lee, Changho;Lee, Woojin
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.45-58
    • /
    • 2015
  • The aim of this study is to suggest a semi-empirical equation for estimating the hydraulic conductivity of sands using geoelectrical measurements technique. The suggested formula is based on the original Kozeny-Carman equation; therefore varying factors affecting the Kozeny-Carman equation were selected as the testing variables, and six different sands with varying particle sizes and particle shapes were used as the testing materials in this study. To measure both hydraulic and electrical conductivities, a series of constant head permeameter tests equipped with the four electrodes conductivity probe was conducted. Test results reveal that the effects of both pore water conductivity and flow rate in relation between hydraulic conductivity and formation factor (=pore water conductivity / measused conductivity of soil) of tested materials are negligible. However, because the variations of hydraulic conductivity of the tested sands according to particle sizes are significant, the estimated hydraulic conductivity using the formation factor varies with particle sizes. The overall comparison between the measured hydraulic conductivity and the estimated hydraulic conductivity using the suggested formula shows a good agreement, and the variation of hydraulic conductivity with varying Archie's m exponents is smaller compared with varying porosities.

Prediction of Tensile Strength of High-Nitrogen 18Mn-18Cr Austenitic Steels for Generator Retaining Ring (발전기용 오스테나이트계 18Mn-18Cr 고질소강의 제조와 인장강도 예측)

  • Hwang, Byoungchul;Lee, Tae-Ho
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.483-488
    • /
    • 2013
  • Over the past few decades, high-nitrogen austenitic steels have steadily received greater attention since they provide a unique combination of high strength and ductility, good corrosion resistance, and non-magnetic properties. Recently, highnitrogen 18Mn-18Cr austenitic steels with enhanced strength have been developed and widely used for generator retaining rings in order to prevent the copper wiring from being displaced by the centrifugal forces occurring during high-speed rotation. The high-nitrogen austenitic steels for generator retaining ring should be expanded at room temperature and then stress relief annealed at around $400^{\circ}C$ to achieve the required mechanical properties. In this study, four kinds of high-nitrogen 18Mn-18Cr austenitic steels with different nitrogen content were fabricated by using a pressurized vacuum induction melting furnace, and then the effects of nitrogen content, cold working, and stress relieving on tensile properties were investigated. The yield and tensile strengths increased proportionally with increasing nitrogen content and cold working, and they further increased after stress relieving treatment. Based on these results, a semi-empirical equation was proposed to predict the tensile strength of highnitrogen 18Mn-18Cr austenitic steels for generator retaining rings. It will be a useful for the effective fabrication of high-nitrogen 18Mn-18Cr austenitic steels for generator retaining rings with the required tensile properties.

Lateral Wall Movements and Apparent Earth Pressures for In-situ Walls during Deep Excavations in Multi-Layered Grounds with Rocks (암반을 포함한 다층토 지반에서의 깊은 굴착시 흙막이벽체의 수평변위 및 겉보기토압)

  • 유충식;김연정
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the measured performance of in-situ walls using the measured data collected from various deep excavation sites in urban area. A variety of in-situ wall systems from 57 sites were considered, including H-pile walls, soil cement walls, cast-in-place pile walls, and diaphram walls. The examination included lateral wall movements as well as apparent earth pressure distributions. The measured data were thoroughly analyzed to investigate the effects of various components of in-situ wall system, such as types of wall and supporting system, on the lateral wall movement as well as on the apparent earth pressure distribution. The results wee then compared with the current design/analysis methods, and information is presented in chart formes to provide tools that can be used for design and analysis. Using the measured data, a semi-empirical equation for predicting deep excavation induced maximum lateral wall movement is suggested.

  • PDF

The Comparative Estimation of Soil Erosion for Andong and Imha Basins using GIS Spatial Analysis (GIS 공간분석을 이용한 안동·임하호 유역의 토사유실 비교 평가)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.341-347
    • /
    • 2006
  • Geographically Imha basin is adjacent to Andong basin, but the occurrence of turbid water in each reservoir by storm events shows big differences. Hence, it is very important to identify the reason for these large differences. This study compared and analyzed soil erosion using the semi-empirical soil erosion model, RUSLE for both Imha and Andong basin, especially with emphasis on high-density turbid water. The agricultural district, which is the most vulnerable to soil erosion, was intensively analyzed based on land cover map produced by Ministry of Environment. As a result, the portion of the agricultural area is 11.88% for Andong basin, while it is 14.95% for Imha basin. Also all RUSLE factors excepts practice factor turned out to be higher for Imha basin. This means that the basin characteristics such as soil texture, terrain, and land cover for Imha basin is more vulnerable to soil erosion. Estimation of soil erosion by RUSLE for Andong and Imha basin is 1,275,806 ton and 1,501,608 ton, respectively, showing higher soil erosion by 225,802 ton for Imha basin.