DOI QR코드

DOI QR Code

Development of an energy and efficiency calibration method for stilbene scintillators

  • Kim, Chanho (Department of Bio-Convergence Engineering, Korea University) ;
  • Kim, Jaehyo (Department of Energy Systems Engineering, Seoul National University) ;
  • Hong, Wooseong (Department of Energy Systems Engineering, Seoul National University) ;
  • Yeom, Jung-Yeol (Department of Bio-Convergence Engineering, Korea University) ;
  • Kim, Geehyun (Department of Energy Systems Engineering, Seoul National University)
  • Received : 2022.03.08
  • Accepted : 2022.06.16
  • Published : 2022.10.25

Abstract

A method for calibrating the energy scale and detection efficiency of stilbene scintillators is presented herein. This method can be used to quantitatively analyze the Compton continuum of gamma-ray spectra obtained using such scintillators. First, channel-energy calibration was conducted by fitting a semi-empirical equation for the Compton continuum to the acquired energy spectrum and a new method to evaluate the intrinsic detection efficiency, called intrinsic Compton efficiency, of stilbene scintillators was proposed. The validity of this method was verified by changing experimental conditions such as the number of sources being measured simultaneously and the detector-source distance. According to the energy calibration, the standard error for the estimated Compton edge position was ±1.56 keV. The comparison of the intrinsic Compton efficiencies calculated from the single- and two-source spectra showed that the mean absolute difference and the mean absolute percentage difference are 0.031 %p and 0.557%, respectively, demonstrating reasonable accuracy of this method. The feasibility of the method was confirmed for an energy range of 0.5-1.5 MeV, showing that stilbene scintillators can be used to quantitatively analyze gamma rays in mixed-radiation fields.

Keywords

Acknowledgement

This work was supported by National Research Foundation of Korea (NRF) (2017M2A8A4017932, NRF-2018R1D1A1A02048400, and NRF-2020R1A2C2007376), and Korea Environmental Industry & Technology Institute (KEITI) through Subsurface Environment Management (SEM) Project, funded by Korea Ministry of Environment (MOE) (2018002440004).

References

  1. M.J. Cieslak, K.A.A. Gamage, R. Glover, Critical review of scintillating crystals for neutron detection, Crystals 9 (2019) 480. https://doi.org/10.3390/cryst9090480
  2. A. Osovizky, D. Ginzburg, A. Manor, R. Seif, M. Ghelman, I. Cohen-Zada, M. Ellenbogen, V. Bronfenmakher, V. Pushkarsky, E. Gonen, SENTIRADdan innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 652 (2011) 41-44. https://doi.org/10.1016/j.nima.2011.01.027
  3. J. Nattress, I. Jovanovic, Response and calibration of organic scintillators for gamma-ray spectroscopy up to 15-MeV range, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 871 (2017) 1-7, https://doi.org/10.1016/j.nima.2017.07.024.
  4. X. Wen, T. Harvey, R. Weinmann-Smith, J. Walker, Y. Noh, R. Farley, A. Enqvist, Characterization of a tin-loaded liquid scintillator for gamma spectroscopy and neutron detection, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 897 (2018) 47-53, https://doi.org/10.1016/j.nima.2018.04.054.
  5. H. Al Hamrashdi, S.D. Monk, D. Cheneler, Passive gamma-ray and neutron imaging systems for national security and nuclear non-proliferation in controlled and uncontrolled detection areas: review of past and current status, Sensors (Basel) 19 (2019), https://doi.org/10.3390/s19112638.
  6. H.S. Kim, M.B. Smith, M.R. Koslowsky, S.-W. Kwak, S.-J. Ye, G. Kim, Characterization of a CLYC detector and validation of the Monte Carlo simulation by measurement experiments, J. Radiat. Prot. Res. 42 (2017) 48-55. https://doi.org/10.14407/jrpr.2017.42.1.48
  7. H.S. Kim, S.-J. Ye, G. Lee, G. Kim, Optimization of the collimator mask for the rotational modulation collimator-based gamma-ray/neutron dual-particle imager, Curr. Appl. Phys. 19 (2019) 856-865. https://doi.org/10.1016/j.cap.2019.03.021
  8. M.B. Smith, T. Achtzehn, H.R. Andrews, E.T.H. Clifford, P. Forget, J. Glodo, R. Hawrami, H. Ing, P. O'Dougherty, K.S. Shah, U. Shirwadkar, L. SoundaraPandian, J. Tower, Fast neutron measurements using Cs2LiYCl6:Ce (CLYC) scintillator, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 784 (2015) 162-167, https://doi.org/10.1016/j.nima.2014.09.021.
  9. S. Ashrafi, M. Ghahremani Gol, Energy calibration of thin plastic scintillators using Compton scattered gamma-rays, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 642 (2011) 70-74, https://doi.org/10.1016/j.nima.2011.04.003.
  10. N. Kudomi, Energy calibration of plastic scintillators for low energy electrons by using Compton scatterings of gamma rays, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 430 (1999) 96-99, https://doi.org/10.1016/S0168-9002(99)00200-4.
  11. E.R. Siciliano, J.H. Ely, R.T. Kouzes, J.E. Schweppe, D.M. Strachan, S.T. Yokuda, Energy calibration of gamma spectra in plastic scintillators using Compton kinematics, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 594 (2008) 232-243, https://doi.org/10.1016/j.nima.2008.06.031.
  12. J.M. Regis, G. Pascovici, J. Jolie, M. Rudigier, The mirror symmetric centroid difference method for picosecond lifetime measurements via γ-γ coincidences using very fast LaBr3(Ce) scintillator detectors, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 622 (2010) 83-92, https://doi.org/10.1016/j.nima.2010.07.047.
  13. L. Swiderski, M. Moszynski, W. Czarnacki, J. Iwanowska, A. Syntfeld-Kazuch, T. Szczesniak, G. Pausch, C. Plettner, K. Roemer, Measurement of Compton edge position in low-Z scintillators, Radiat. Meas. 45 (2010) 605e607, https://doi.org/10.1016/j.radmeas.2009.10.015.
  14. C. Kim, J.-Y. Yeom, G. Kim, Digital n-γ pulse shape discrimination in organic scintillators with a high-speed digitizer, J. Radiat. Prot. Res. 44 (2019) 53-63, https://doi.org/10.14407/jrpr.2019.44.2.53.
  15. M.L. Ruch, M. Flaska, S.A. Pozzi, Pulse shape discrimination performance of stilbene coupled to low-noise silicon photomultipliers, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 793 (2015) 1-5. https://doi.org/10.1016/j.nima.2015.04.053
  16. G. Dietze, H. Klein, Gamma-calibration of NE 213 scintillation counters, Nucl. Instruments Methods Phys. Res. 193 (1982) 549-556. https://doi.org/10.1016/0029-554X(82)90249-X
  17. T.A. Laplace, B.L. Goldblum, J.A. Brown, J.J. Manfredi, Scintillator light yield measurements with waveform digitizers, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 959 (2020), 163485. https://doi.org/10.1016/j.nima.2020.163485
  18. W.R. Leo, Radiation protection. Biological effects of radiation, in: Tech. Nucl. Part. Phys. Exp., Springer, 1994, pp. 69-79.
  19. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010.
  20. G. Dietze, IEEE Transaction on Nuclear Science, vol. 26, 1979, p. 398. NS-. https://doi.org/10.1109/TNS.1979.4329665
  21. M.M. Bourne, S.D. Clarke, N. Adamowicz, S.A. Pozzi, N. Zaitseva, L. Carman, Neutron detection in a high-gamma field using solution-grown stilbene, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 806 (2016) 348-355. https://doi.org/10.1016/j.nima.2015.10.025
  22. E.I. Prosper, O.J. Abebe, U.J. Ogri, Characterisation of cerium-doped lanthanum bromide scintillation detector, Lat. Am. J. Phys. Educ. 6 (2012) 162.
  23. A. Jehouani, R. Ichaoui, M. Boulkheir, Study of the NaI (Tl) efficiency by Monte Carlo method, Appl. Radiat. Isot. 53 (2000) 887-891. https://doi.org/10.1016/S0969-8043(00)00254-2
  24. F.O. Ogundare, E.O. Oniya, F.A. Balogun, Dependence of NaI (Tl) detector intrinsic efficiency on source-detector distance, energy and off-axis distance: their implications for radioactivity measurements, Pramana 70 (2008) 863-874. https://doi.org/10.1007/s12043-008-0095-z
  25. J. Boo, M.D. Hammig, M. Jeong, Compact lightweight imager of both gamma rays and neutrons based on a pixelated stilbene scintillator coupled to a silicon photomultiplier array, Sci. Rep. 11 (2021) 1-14. https://doi.org/10.1038/s41598-020-79139-8
  26. W. Steinberger, N. Giha, M. Hua, S. Clarke, S. Pozzi, Anisotropic neutron response of trans-stilbene and impact on a handheld dual particle imager, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 1003 (2021), 165266. https://doi.org/10.1016/j.nima.2021.165266
  27. H.S. Kim, J. Lee, S. Choi, Y. Bang, S.-J. Ye, G. Kim, Design and fabrication of CLYC-based rotational modulation collimator (RMC) system for gamma-ray/neutron dual-particle imager, J. Radiat. Prot. Res. 46 (2021) 112-119. https://doi.org/10.14407/jrpr.2021.00262
  28. H.S. Kim, G. Kim, S.-J. Ye, Dual-particle imaging performance of a Cs2LiYCl6: Ce (CLYC)-based rotational modulation collimator (RMC) system, IEEE Trans. Nucl. Sci. 69 (6) (2021) 1389-1396, https://doi.org/10.1109/TNS.2021.3140035.