• Title/Summary/Keyword: Semi-continuous method

Search Result 98, Processing Time 0.029 seconds

Effect of trace oxygen on H2S removal in anaerobic digestion (혐기소화 시 미량 산소가 H2S 제거에 미치는 영향)

  • Jo, Eun-Young;Park, Kwang-Su;Ahn, Johng-Hwa
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.21-25
    • /
    • 2019
  • This work experimentally determined the effect of microaerobic condition on anaerobic digestion of thickened waste activated sludge in semi-continuous mesophilic digesters at hydraulic retention time of 20 days. The concentration of hydrogen sulfide was $7{\pm}2ppm$ at the microaerobic condition and $14{\pm}2ppm$ at the anaerobic condition. Removal efficiency of volatile solid was not significantly different between microaerobic ($40{\pm}8%$) and anaerobic ($38{\pm}8%$) conditions. There was no important difference between microaerobic ($1,352{\pm}98ml/d$) and anaerobic ($1,362{\pm}104ml/d$) conditions in the biogas production, either. Therefore, it could be concluded that the application of the microaerobic condition was an efficient method of the hydrogen sulfide removal from the biogas.

Control of Encapsulation Efficiency and Initial Burst in Polymeric Microparticle Systems

  • Yeo, Yeon;Park, Ki-Nam
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Initial burst is one of the major challenges in protein-encapsulated microparticle systems. Since protein release during the initial stage depends mostly on the diffusional escape of the protein, major approaches to prevent the initial burst have focused on efficient encapsulation of the protein within the microparticles. For this reason, control of encapsulation efficiency and the extent of initial burst are based on common formulation parameters. The present article provides a literature review of the formulation parameters that are known to influence the two properties in the emulsion-solvent evaporation/extraction method. Physical and chemical properties of encapsulating polymers, solvent systems, polymer-drug interactions, and properties of the continuous phase are some of the influential variables. Most parameters affect encapsulation efficiency and initial burst by modifying solidification rate of the dispersed phase. In order to prevent many unfavorable events such as pore formation, drug loss, and drug migration that occur while the dispersed phase is in the semi-solid state, it is important to understand and optimize these variables.

Thermo-mechanical response of size-dependent piezoelectric materials in thermo-viscoelasticity theory

  • Ezzat, Magdy A.;Al-Muhiameed, Zeid I.A.
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.535-546
    • /
    • 2022
  • The memory response of nonlocal systematical formulation size-dependent coupling of viscoelastic deformation and thermal fields for piezoelectric materials with dual-phase lag heat conduction law is constructed. The method of the matrix exponential, which constitutes the basis of the state-space approach of modern control theory, is applied to the non-dimensional equations. The resulting formulation together with the Laplace transform technique is applied to solve a problem of a semi-infinite piezoelectric rod subjected to a continuous heat flux with constant time rates. The inversion of the Laplace transforms is carried out using a numerical approach. Some comparisons of the impacts of nonlocal parameters and time-delay constants for various forms of kernel functions on thermal spreads and thermo-viscoelastic response are illustrated graphically.

Anti-allergic Effects of Castanea crenata Leaf Tea (밤나무 잎차(茶)의 항알레르기 효과)

  • Choi, Ok-Beom;Kim, Kyung-Man;Yoo, Gyurng-Soo;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.468-471
    • /
    • 1998
  • Regarding the characterstics of allergic diseases, preventive and continuous treatment is desirable, and tea would be the one of the best functional food formula for it. Here we report the development of tea processing method for the leaves of Castnaea crenata. Two forms of Castnaea crenata leaf tea were prepared, non-fermented steaming tea and semi-fermented rolling tea. Anti-allergic actions of Castanea crenata leaf tea were asessed by testing their effects on the degranulation of mast cells. For this, hexosaminidase release (degranulation marker) from RBL-2H3 cells (mast cell line) was used. At the concentration of $300\;{\mu}g/mL$ of the water extract, the degranulation of RBL-2H3 cells were inhibited 50.4% and 35.4% by non-fermented steaming tea and semi-fermented rolling tea, respectively. These results suggest that the tea processing method we developed could provide a valuable resource for the treatment of allergic diseases.

  • PDF

Optimal Design of Generalized Process-storage Network Applicable To Polymer Processes (고분자 공정에 적용할 수 있는 일반화된 공정-저장조 망구조 최적설계)

  • Yi, Gyeongbeom;Lee, Euy-Soo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.249-257
    • /
    • 2007
  • The periodic square wave (PSW) model was successfully applied to the optimal design of a batch-storage network. The network structure can cover any type of batch production, distribution and inventory system, including recycle streams. Here we extend the coverage of the PSW model to multitasking semi-continuous processes as well as pure continuous and batch processes. In previous solutions obtained using the PSW model, the feedstock composition and product yield were treated as known constants. This constraint is relaxed in the present work, which treats the feedstock composition and product yield as free variables to be optimized. This modification makes it possible to deal with the pooling problem commonly encountered in oil refinery processes. Despite the greater complexity that arises when the feedstock composition and product yield are free variables, the PSW model still gives analytic lot sizing equations. The ability of the proposed method to determine the optimal plant design is demonstrated through the example of a high density polyethylene (HDPE) plant. Based on the analytical optimality results, we propose a practical process optimality measure that can be used for any kind of process. This measure facilitates direct comparison of the performance of multiple processes, and hence is a useful tool for diagnosing the status of process systems. The result that the cost of a process is proportional to the square root of average flow rate is similar to the well-known six-tenths factor rule in plant design.

Aluminum Wire Bonding by Longitudinal Vibration of Ultrasonic Transducer (초음파 트랜스듀서의 종진동을 이용한 알루미늄 와이어 용접)

  • Lee, G.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.38-45
    • /
    • 1996
  • In recent years, ultrasonic has been widely applied in measurement and industrial fields and its application range has been expanded as a result of continuous research and development. Wire Bonding Machine, an instrument fabricating semi-conductor, makes use of ultrasonic bonding method. Specially, the method utilizes the longitudinal vibration of ultrasonic transducer composed of piezoelectric vibrator and horn. This work investigates the design conditions affecting the dynamic characteristics through the theretical and experimental analysis. It conducts separately the system identification of piezoelectric vibrator in time domain and the modal analysis of horn in frequency domain. The integrated modeling is conducted via a combbination of dynamic identification of piezoelectric vibrator and theroretical analysis of horn. Then comparison is made for theroretical and experimental results of the dynamic characteristics of the ultrasonic transducer comprised of piezoelectric vibrator and horn. Form the results of the comparison we develop the design technique of ultrasonic transducer using dynamic characteristics analysis and propose the possibility of ultrasonic bonding considering the optimal conditions for the longitudinal vibration of ultrasonic transducer and other conditions.

  • PDF

Examination of contact problem between functionally graded punch and functionally graded layer resting on elastic plane

  • Polat, Alper
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.135-143
    • /
    • 2021
  • In this study, continuous contact problem in the functionally graded (FG) layer loaded with a FG flat punch resting on the elastic semi-infinite plane was analyzed by the finite element method (FEM). It was assumed that the shear modulus and density of the layer and punch varied according to exponentially throughout their depth. FG layer's weight was included to the problem and additionally all surfaces were considered as frictionless. Analysis of FG materials was performed with a special macro which was added to the ANSYS program. Firstly, the shear modulus of the punch was considered to be very rigid and the results of initial separation load (λcr) and distance (xcr) were compared with the analytical solution. Afterwards, results obtained from the contact analysis made according to the inhomogeneity parameters (β, γ) between FG punch-FG layer which had been unprecedented in the literature were discussed. As a result, FG punch's stress values at the punch edges where stress accumulations occurred were found to be smaller than the rigid punch. The security of the structure, longer life of the material and ease of production are directly related to the reduction of the stress values. The results obtained in this study are important in this respect. Also this work is the first study that investigates the effect of FG punch on the FG layer.

A Method for Determining the Peak Level of Risk in Root Industry Work Environment using Machine Learning (기계학습을 이용한 뿌리산업 작업 환경 위험도 피크레벨 결정방법)

  • Sang-Min Lee;Jun-Yeong Kim;Suk-Chan Kang;Kyung-Jun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.127-136
    • /
    • 2024
  • Because the hazardous working environments and high labor intensity of the root industry can potentially impact the health of workers, current regulations have focused on measuring and controlling environmental factors, on a semi-annual basis. However, there is a lack of quantitative criteria addressing workers' health conditions other than the physical work environment. This gap makes it challenging to prevent occupational diseases resulting from continuous exposure to harmful substances below regulatory thresholds. Therefore, this paper proposes a machine learning-based method for determining the peak level of risk in root industry work environments and enables real-time safety assessment in workplaces utilizing this approach.

Production of Pyruvate Dehydrogenase Complex-E2 Specific Human Monoclonal Antibody in Fed-batch Culture Systems with High Cell Density Recombinant Escherichia coli (고농도 재조합 대장균의 Fed-batch 배양 시스템을 이용한 Pyruvate Dehydrogenase Complex-E2 특이성 인간 모노클론 항체의 생산)

  • 이미숙;전주미;차상훈;정연호
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.489-496
    • /
    • 2000
  • Several culture systems including batch, two-stage CSTR, semi-fed batch, and two-stage cyclic fed-batch were investigated for the efficient production of the Fab fraction of PDC-E2 specific human monoclonal antibody using high cell density recombinant E. coli. A two-phase batch system and a two-stage continuous system were examined to overcome plasmid instability problems, by separating the growth and the production stages. The cell density and productivity of the two-stage continuous culture was better than that of the two-phase batch fermentation. In the two-stage continuous culture system with DO-stat, the cell growth and the productivity were superior to those of the system without the DO control. Also, almost total plasmid stability was maintained in the two-stage continuous culture system. Modified M9 medium was selected as an optimum feeding medium for the fed-batch process, and the optimum C/N ratio determined to be 2:3. The optimum feeding rate was $0.6g/\ell/hr$ for a constant feeding strategy in semi-fed batch system. When the feeding medium was fed by pulsing, it was observed that more frequent pulsing resulted in improved cell growth. The linear feeding method was the most efficient of the various feeding methods tested. Finally, high cell density culture using a two-stage cyclic fed batch system with pH-stat was tried because the linear feeding method showed limitations in terms of obtaining high cell densities, and a cell density of $54 g/\ell$ was achieved. It was concluded that the two-stage cyclic fed batch system was the most efficient system for high cell density culture of the systems tested. However, productivity improvements were lower than expected due to the extremely high accumulations of acetate, although the low levels of residual glucose were maintained.

  • PDF

A Study on the GIS-based Method of Building Digital Forest Land-Use Map (GIS 기반 산지이용구분도 작성방법에 관한 연구)

  • Park, Young-Kyu;Kwon, Soon-Duk;Song, Chul-Chul;Kwon, Dae-Soon;Lee, Jong-Hak;Kim, Hyung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.46-57
    • /
    • 2006
  • The purpose of this study is to develop a GIS-based digital Forest Land-use(FLU) Map Building Process which will be adopted as the map publishment methodology for the official FLU Map notification in 2007. The process is composed of 6 steps, extracting forest lands from Continuous Land Map(CLM), extracting forest land borders restricted by other laws, extracting boundaries between semi- and reserve forest lands, making digital FLU map by integrating spatial and attribute data among the extractions, printing FLU map and FLU register, and re-correcting zoning errors. Through the process, in 1:25,000 and 1:5,000 scale, 14 and 173 sheets of the FLU Maps and it's register were created for the whole area of Hwaseong, Kyunggi.

  • PDF