지적도면은 매 필지별로 토지에 대한 지번, 위치, 경RP , 소유권등을 규정하고 있는 토지에 관한 가장 기본적인 자료이다. 지적과 관련된 업무는 그 동안 거의 수작업에 의한 방법을 사용하여 효율성의 문제가 대두되었다. 따라서 정부에서는 지적도면을 전산화하려 하였으며, 토지 및 임야대장에 대한 속성정보를 모두 전산 입력하였다. 그러나 도형정보인 지적도면의 전산화가 이루어지지않아 효율적인 토지정보시스템 구축에 많은 어려움이 있다. 따라서 본 연구에서는 오차가 허용될 수 없는 지적도면의 특성을 감안하여 , 스크린 디지타이징을 원형(prototype) 으로 하고 작업의 효율성을 위해 선의 교점을 찾는 과정을 선추적 방식을 통해 자동화한, 혼합형(hybrid) 벡터라이징 방식을 개발하였다. 개발된 프로그램을 구동한 결과 백터라이징의 정확도에 있어서는 스크린 디지타이징 방법과 동일하였고, 효율성 측면에서는 본 프로그램에 의한 방법이 스크린 디지타이징 방법보다 35분 정도 시간을 단축할 수 있었다.
In the welding for the steel structure of H-beam with mild steel and 490N/$\textrm{mm}^2$ high tensile steel, we applied the fillet weld mostly and 6-8mm weld length(AISC-spec.). And a new developed metal-cored-wire is used in automatic welding as well as semi-automatic welding. In this study we have attempted to raise the welding productivity and to stabilize the quality on horizontal positions of fillet welding with the following items: - We improved the weld productivity using metal based cored wire with a high deposition rate in the steel structure of H-beam. - We tested the weldability and evaluated the quality of the weldmetal by horizontal fillet $CO_2$ welding. The process is carried out in combination with a special purpose metal-based FCW with excellent resistance to porosity and high welding speed. - We studied the micro structure of the weldmetal by the various welding conditions. - We studied the effect of welding residual stress by the welding conditions in T-joint. Therefore, it can be assured that more productive and superior quality of the weldmetal can be taken from this study results.
This study examined how to create 2D basic pattern of individuals by means of 3-D body figure, which is to develop a flat of individual basic pattern directly from the 3-D body scan data of each subject using that of the upper body of a male adult. In terms of methodology, this study adopted 3D body scan data on system and body to make examinations in the following steps: 1. Standard point and line were set on human body, along with 3-D definition points(feature points). 2. PB was created by modifying horizontal and longitudinal section of scan data. 3. Ways to set reserve were established in the findings of PB planar development. Respective developed flat patterns were compared with pattern findings in previous studies by means of sensory evaluation. As a result, it was found that both system and body model are basic pattern and belong to appropriate pattern as semi-tight-fit basic pattern with overall appropriate tolerances. Thus, this study came to a conclusion that it is feasible and valid to develop theories for flat development as considered herein.
Segmentation is one of the first steps in most diagnosis systems for characterization of dental caries in an early stage. The purpose of automatic dental cavity detection system is helping dentist to make more precise diagnosis. We proposed the semi-automatic method for the segmentation of dental caries on digital x-ray images. Based on a manually and roughly selected ROI (Region of Interest), it calculated the contour for the dental cavity. A snake algorithm which is one of active contour models repetitively refined the initial contour and self-examination and correction on the segmentation result. Seven phantom tooth from incisor to molar were made for the evaluation of the developed algorithm. They contained a different form of cavities and each phantom tooth has two dental cavities. From 14 dental cavities, twelve cavities were accurately detected including small cavities. And two cavities were segmented partly. It demonstrates the practical feasibility of the dental lesion detection using Computer-aided Detection (CADe).
An efficient algorithm is proposed to select the proper tools and generate their paths for NC rough cutting of dies and molds with sculptured surfaces. Even though a milling process consists of roughing, semi-finishing, and finishing, most material is removed by a rough cutting process. Therfore it can be said that the rough cutting process occupy an important portion of the NC milling process, and accordingly, an efficient rough cutting method contributes to an efficient milling process. In order work, the following basic assumption is accepted for the efficient machining. That is, to machine a region bounded by a profile, larger tools should be used in the far inside and the region adjacent to relatively simple portion of the boundary while smaller tools are used in the regions adjacent to the relatively complex protion. Thus the tools are selected based on the complexity of the boundary profile adjacent to the region to be machined. An index called cutting path ratio is proposed in this work as a measure of the relative complexity of the profile with respect to a tool diameter. Once the tools are selected, their tool paths are calculated starting from the largest to the smallest tool.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권1호
/
pp.105-125
/
2024
Gliomas are the most common malignant brain tumor and cause the most deaths. Manual brain tumor segmentation is expensive, time-consuming, error-prone, and dependent on the radiologist's expertise and experience. Manual brain tumor segmentation outcomes by different radiologists for the same patient may differ. Thus, more robust, and dependable methods are needed. Medical imaging researchers produced numerous semi-automatic and fully automatic brain tumor segmentation algorithms using ML pipelines and accurate (handcrafted feature-based, etc.) or data-driven strategies. Current methods use CNN or handmade features such symmetry analysis, alignment-based features analysis, or textural qualities. CNN approaches provide unsupervised features, while manual features model domain knowledge. Cascaded algorithms may outperform feature-based or data-driven like CNN methods. A revolutionary cascaded strategy is presented that intelligently supplies CNN with past information from handmade feature-based ML algorithms. Each patient receives manual ground truth and four MRI modalities (T1, T1c, T2, and FLAIR). Handcrafted characteristics and deep learning are used to segment brain tumors in a Global Convolutional Neural Network (GCNN). The proposed GCNN architecture with two parallel CNNs, CSPathways CNN (CSPCNN) and MRI Pathways CNN (MRIPCNN), segmented BraTS brain tumors with high accuracy. The proposed model achieved a Dice score of 87% higher than the state of the art. This research could improve brain tumor segmentation, helping clinicians diagnose and treat patients.
Despite many measures, still from time to time catastrophic events occur, even after reviewing potential scenarios with HAZID tools. Therefore, it is evident that in order to prevent such events, answering the question: "What can go wrong?" requires more enhanced HAZID tools. Recently, new system based approaches have been proposed, such as STPA (system-theoretic process analysis) and Blended Hazid, but for the time being for several reasons their availability for general use is very limited. However, by making use of available advanced software and technology, traditional HAZID tools can still be improved in degree of completeness of identifying possible hazards and in work time efficiency. The new HAZID methodology proposed here, the Data-based semi-Automatic HAZard IDentification (DAHAZID), seeks to identify possible scenarios with a semi-automated system approach. Based on the two traditional HAZID tools, Hazard Operability (HAZOP) Study and Failure Modes, Effects, and Criticality Analysis (FMECA), the new method will minimize the limitations of each method. This will occur by means of a thorough systematic preparation before the tools are applied. Rather than depending on reading drawings to obtain connectivity information of process system equipment elements, this research is generating and presenting in prepopulated work sheets linked components together with all required information and space to note HAZID results. Next, this method can be integrated with proper guidelines regarding process safer design and hazard analysis. To examine its usefulness, the method will be applied to a case study.
자동 문서 범주화란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 할당하는 작업이다. 자동 문서 범주화에 관한 기존의 연구들은 지도 학습 기반으로서, 보통 수작업에 의해 범주가 할당된 대량의 학습 문서를 이용하여 범주화 작업을 학습한다. 그러나, 이러한 방법의 문제점은 대량의 학습 문서를 구축하기가 어렵다는 것이다. 즉, 학습 문서 생성을 위해 문서를 수집하는 것은 쉬우나, 수집된 문서에 범주를 할당하는 것은 매우 어렵고 시간이 많이 소요되는 작업이라는 것이다. 본 논문에서는 이러한 문제점을 해결하기 위해서, 준지도 학습 기반의 자동 문서 범주화 기법을 제안한다. 제안된 기법은 범주가 할당되지 않은 말뭉치와 각 범주의 핵심어만을 사용한다. 각 범주의 핵심어로부터 문맥간의 유사도 측정 기법을 이용한 부스트래핑(bootstrapping) 기법을 통하여 범주가 할당된 학습 문서를 자동으로 생성하고, 이를 이용하여 학습하고 문서 범주화 작업을 수행한다. 제안된 기법은 학습 문서 생성 작업과 대량의 학습 문서 없이 적은 비용으로 문서 범주화를 수행하고자 하는 영역에서 유용하게 사용될 수 있을 것이다.
Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Abhishek Subedi;Mohammad R. Jahanshahi
Smart Structures and Systems
/
제31권4호
/
pp.365-381
/
2023
The existing vision-based techniques for inspection and condition assessment of civil infrastructure are mostly manual and consequently time-consuming, expensive, subjective, and risky. As a viable alternative, researchers in the past resorted to deep learning-based autonomous damage detection algorithms for expedited post-disaster reconnaissance of structures. Although a number of automatic damage detection algorithms have been proposed, the scarcity of labeled training data remains a major concern. To address this issue, this study proposed a semi-supervised learning (SSL) framework based on consistency regularization and cross-supervision. Image data from post-earthquake reconnaissance, that contains cracks, spalling, and exposed rebars are used to evaluate the proposed solution. Experiments are carried out under different data partition protocols, and it is shown that the proposed SSL method can make use of unlabeled images to enhance the segmentation performance when limited amount of ground truth labels are provided. This study also proposes DeepLab-AASPP and modified versions of U-Net++ based on channel-wise attention mechanism to better segment the components and damage areas from images of reinforced concrete buildings. The channel-wise attention mechanism can effectively improve the performance of the network by dynamically scaling the feature maps so that the networks can focus on more informative feature maps in the concatenation layer. The proposed DeepLab-AASPP achieves the best performance on component segmentation and damage state segmentation tasks with mIoU scores of 0.9850 and 0.7032, respectively. For crack, spalling, and rebar segmentation tasks, modified U-Net++ obtains the best performance with Igou scores (excluding the background pixels) of 0.5449, 0.9375, and 0.5018, respectively. The proposed architectures win the second place in IC-SHM2021 competition in all five tasks of Project 2.
The purpose of this study is to provide fundamental information for standardization of 3D body measurement. This research analyzes errors occurring in the process of extracting body size from 3D body scan data. First, as a result of analyzing basic state of the 3D body scanner's calibration, the point number of each section was almost the same, while the right and left as well as the front and back coordinates of the center of gravity are not, showing unstable data. Nevertheless, the latter does not influence on the size of cylinder such as width and circumference. Next, we analyzed point coordinates variations of scan data on a mannequin nude by life casting. The result was great deflection in case of complicated or horizontal sections including the reference point beyond proper distance from centers of four cameras. In case of the mannequin's size, accuracy proves comparatively high in that measurement errors in height, width, depth, and length dimension occurred all within allowable errors, only except chest depth, while there were a lot of measurement errors in a circumference dimension. Secondly, analysis of accuracy of automatic extraction identification program algorithm presented that a semi-automatic measurement program is better than an automatic measurement program. While both of them ate very acute in parts related to crotch, they are not in armpit related parts. Therefore, in extracting of human body size from 3D scan data, what really matters seems to parts related to armpits.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.