• 제목/요약/키워드: Semi-active control

검색결과 414건 처리시간 0.029초

유동모드 MR 댐퍼가 구비된 대퇴의족의 설계 및 해석 (Design and Analysis of Above Knee Prosthetic Leg Using MR Damper)

  • 박진혁;강제원;최승복
    • 한국소음진동공학회논문집
    • /
    • 제26권2호
    • /
    • pp.165-171
    • /
    • 2016
  • A prosthetic knee for above-knee (AK) amputee is categorized into passive and active type. The passive prosthetic knee is generally made by elastic material. Although AK amputee can easily walk by using passive prosthetic leg, knee joint motions are not similar to ordinary persons. The active prosthetic leg can control the knee angle owing to the actuator and microprocessor. However, the active type is not cost-effective and the stability may be lost due to the malfunction of sensors. In order to resolve these disadvantages of passive and active type, a semi-active prosthetic knee which can control the knee angle is proposed in this work. The proposed semi-active one requires a less input energy but provides active type performance. In order to achieve this goal, in this work, a semi-active prosthetic knee using magneto-rheological (MR) damper for AK amputees is designed. The MR damper can support the weight of body by using less energy than actuator of active prosthetic. It can control knee angle by inducing the magnetic field at the time of stance phase. This salient characteristic is evaluated and presented in this work.

Closed-loop structural control with real-time smart sensors

  • Linderman, Lauren E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1147-1167
    • /
    • 2015
  • Wireless smart sensors, which have become popular for monitoring applications, are an attractive option for implementing structural control systems, due to their onboard sensing, processing, and communication capabilities. However, wireless smart sensors pose inherent challenges for control, including delays from communication, acquisition hardware, and processing time. Previous research in wireless control, which focused on semi-active systems, has found that sampling rate along with time delays can significantly impact control performance. However, because semi-active systems are guaranteed stable, these issues are typically neglected in the control design. This work achieves active control with smart sensors in an experimental setting. Because active systems are not inherently stable, all the elements of the control loop must be addressed, including data acquisition hardware, processing performance, and control design at slow sampling rates. The sensing hardware is shown to have a significant impact on the control design and performance. Ultimately, the smart sensor active control system achieves comparable performance to the traditional tethered system.

Semi-active control of smart building-MR damper systems using novel TSK-Inv and max-min algorithms

  • Askari, Mohsen;Li, Jianchun;Samali, Bijan
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.1005-1028
    • /
    • 2016
  • Two novel semi-active control methods for a seismically excited nonlinear benchmark building equipped with magnetorheological dampers are presented and evaluated in this paper. While a primary controller is designed to estimate the optimal control force of a magnetorheological (MR) damper, the required voltage input for the damper to produce such desired control force is achieved using two different methods. The first technique uses an optimal compact Takagi-Sugeno-Kang (TSK) fuzzy inverse model of MR damper to predict the required voltage to actuate the MR dampers (TSKFInv). The other voltage regulator introduced here works based on the maximum and minimum capacities of MR damper at each time-step (MaxMin). Both semi-active algorithms developed here, use acceleration feedback only. The results demonstrate that both TSKFInv and MaxMin algorithms are quite effective in seismic response reduction for wide range of motions from moderate to severe seismic events, compared with the passive systems and performs better than original and Modified clipped optimal controller systems, known as COC and MCOC.

A semi-active acceleration-based control for seismically excited civil structures including control input impulses

  • Chase, J. Geoffrey;Barroso, Luciana R.;Hunt, Stephen
    • Structural Engineering and Mechanics
    • /
    • 제18권3호
    • /
    • pp.287-301
    • /
    • 2004
  • Structural acceleration regulation is a means of managing structural response energy and enhancing the performance of civil structures undergoing large seismic events. A quadratic output regulator that minimizes a measure including the total structural acceleration energy is developed and tested on a realistic non-linear, semi-active structural control case study. Suites of large scaled earthquakes are used to statistically quantify the impact of this type of control in terms of changes in the statistical distribution of controlled structural response. This approach includes the impulses due to control inputs and is shown to be more effective than a typical displacement focused control approach, by providing equivalent or better performance in terms of displacement and hysteretic energy reductions, while also significantly reducing peak story accelerations and the associated damage and occupant injury. For earthquake engineers faced with the dilemma of balancing displacement and acceleration demands this control approach can significantly reduce that concern, reducing structural damage and improving occupant safety.

Functionally upgraded passive devices for seismic response reduction

  • Chen, Genda;Lu, Lyan-Ywan
    • Smart Structures and Systems
    • /
    • 제4권6호
    • /
    • pp.741-757
    • /
    • 2008
  • The research field of structural control has evolved from the development of passive devices since 1970s, through the intensive investigation on active systems in 1980s, to the recent studies of semi-active control systems in 1990s. Currently semi-active control is considered most promising in civil engineering applications. However, actual implementation of semi-active devices is still limited due mainly to their system maintenance and associated long-term reliability as a result of power requirement. In this paper, the concept of functionally upgraded passive devices is introduced to streamline some of the state-of-the-art researches and guide the development of new passive devices that can mimic the function of their corresponding semi-active control devices for various applications. The general characteristics of this special group of passive devices are discussed and representative examples are summarized. Their superior performances are illustrated with cyclic and shake table tests of two example devices: mass-variable tuned liquid damper and friction-pendulum bearing with a variable sliding surface curvature.

상태변수/노면입력 관측기를 이용한 반능동 현가시스템 제어 (States/Road Input Observer-based Control of Semi-active Suspensions)

  • 김정헌;이경수
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.102-109
    • /
    • 2000
  • This paper deals with an observer-based preview control for semi-active suspensions. An Observer has been designed such that all the state variables and road inputs can be estimated from accelerations. Since the road input to the rear wheels is a delayed version of that to the front wheels, it can be obtained by estimating the road input to the front wheels without preview the estimated values of state and the estimated road input has been investigated. The results show that the observer-based control can provide good performance. The observer-based preview control improves the dynamic behavior of the rear axle and that of pitch motion compared to the LQ optimal control.

  • PDF

협궤 차량용 준능동형 현가 시스템 설계 (Design of Semi-Active suspension system for Railway Vehicle with narrow gauge)

  • 이남진;김철근;남학기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.473-478
    • /
    • 2005
  • Active suspension system improves ride quality with optimized suspension force, generated by electric, hydrolic or pneumatic power and controlled by micro-processor under various operation condition of train, while Semi-Active susepsion system provides optimized and controlled characteristics of suspensions such as damping coefficient without external energy. The benefits fo Semi-Active suspension are no required power source and to be made compact with lower cost. Train with narrow gauge could be more unstable than one for normal or wide gauge, and it could be more vibrated than others one by external force such as aerodynamic force and track irregularity. So, the reduced ride quality could be improved with appling with Semi-active suspension system. In this report, the Semi-Active suspension system for narrow gauge train shall be proposed and to prepare the Roller Rig test of this train, integration of system, development of control algorithm and confirmation of its performance with simulation tool would be taken.

  • PDF

Seismic response control of buildings with force saturation constraints

  • Ubertini, Filippo;Materazzi, A. Luigi
    • Smart Structures and Systems
    • /
    • 제12권2호
    • /
    • pp.157-179
    • /
    • 2013
  • We present an approach, based on the state dependent Riccati equation, for designing non-collocated seismic response control strategies for buildings accounting for physical constraints, with particular attention to force saturation. We consider both cases of active control using general actuators and semi-active control using magnetorheological dampers. The formulation includes multi control devices, acceleration feedback and time delay compensation. In the active case, the proposed approach is a generalization of the classic linear quadratic regulator, while, in the semi-active case, it represents a novel generalization of the well-established modified clipped optimal approach. As discussed in the paper, the main advantage of the proposed approach with respect to existing strategies is that it allows to naturally handle a broad class of non-linearities as well as different types of control constraints, not limited to force saturation but also including, for instance, displacement limitations. Numerical results on a typical building benchmark problem demonstrate that these additional features are achieved with essentially the same control effectiveness of existing saturation control strategies.

다양한 하중의 진동제어를 위한 준능동 TMD의 이용 (Use of Semi-active Tuned Mass Dampers for Vibration Control under Various Excitations)

  • 김현수;김승준;이동근
    • 한국지진공학회논문집
    • /
    • 제10권1호
    • /
    • pp.51-62
    • /
    • 2006
  • 다양한 원인에 의해서 발생하는 구조물의 동적응답을 감소시키기 위하여 현재까지 여러 가지 형태의 동조질량감쇠기(Tuned Mass Damper; TMD)가 개발되었고 이에 대한 많은 연구가 수행되어 왔다. 본 연구에서는 구조물의 응답에 따라서 실시간으로 TMD의 감쇠를 변화시킬 수 있는 준능동 TMD(Semi-active TMD; STMD)의 제어성능을 다양한 형태의 하중을 적용하여 해석적으로 검토하였다. STMD를 구성하는 준능동 감쇠기의 감쇠력을 조절하기 위하여 skyhook 제어알고리즘을 이용하였다. 조화하중 및 임의의 동적하중을 직접가력하중과 지반진동하중 형태로 단자유도 구조물에 가하여 STMD와 일반적인 TMD의 제어성능을 비교하였다. 또한, 주구조물의 질량의 변화에 따른 TMD 및 STMD의 제어성능의 견실성을 비교하였다. 그리고, 가변감쇠장지 뿐만 아니라 MR 감쇠기를 사용한 STMD의 제어성능도 평가하여 새로운 진동제어장치로서의 활용가능성을 검토하였다. 수치해석을 수행한 결과 STMD는 TMD에 비하여 조화하중 및 임의의 동적하중에 대해서 매우 뛰어난 제어성능을 보이는 것을 확인할 수 있었다.