• Title/Summary/Keyword: Semi-active Suspension System

Search Result 114, Processing Time 0.028 seconds

유전자 알고리즘을 이용한 반능동형가장치의 구조-제어계의 동시최적화

  • 서민선;이시복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.501-504
    • /
    • 1995
  • A Simultaneous optimal design of structural and control system of a semi-active suspension is applied on a helf-car model in this paper. Suspension stiffnesses and dampings are selected as structural design parameters and damping forces of variable dampers as controller parameters. Sence this optimization problem is of large discontinuous space, conventional exhaustive methods are not enough. So we here try out an approach using Genetic Algorithm for our problem. Through numerical simulation work, the performance of the simultaneously optimized system was tested and showed meaningful improvement over the partially optimized ones.

  • PDF

Active Dynamic behavior Control of Vehicle by Using Semi-intelligent Suspension System (반지능형 현가시스템에 의한 차량의 능동적인 동적거동제어)

  • 김대원;배준영;신중호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.15-21
    • /
    • 1998
  • Mostly a ride comfort and handling performance of vehicle is influenced by dynamic behavior control of vehicle. We are focusing on development of a semi-intelligent suspension system with continuously variable damper(HS-SH type). only using absolute velocity of sprung mass without using the relative velocity besides having lower system prices and a little energy requirement. In this paper, the system is realized in consideration to control strategy (sky-hook control, hybrid filter, etc.) and has been proved to have improvement of behavior control of vehicle by quarter car and Vehicle test, respectively.

  • PDF

Vibration Control of Vehicle using Road Profile Information (외란 형상 정보를 활용한 진동제어)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.431-437
    • /
    • 2017
  • In this study, based on the RPS algorithm, the application results to an electrically controlled suspension system using previewed road information are presented. Reducing the excessive vibration induced by a disturbance transmitted to the system and secure its stability is a major issue. In particular, in the automotive industry, the demand is constantly being raised. A typical external disturbance causing vibration and instability of a vehicle is an irregular roadway surface that contacts a running vehicle tire. Therefore, obtaining such profile information is an important process. The RPS algorithm using a multi sensor system was constructed and implemented in a real car. Through experimental work using the RPS system included non-contact type optical sensors, it could robustly reconstruct the road input profiles from the intermixed data onto the vehicle's dynamic motion while traveling at an uneven roadway surface. A controller with a preview control was designed in the framework of a semi-active suspension system based on the 7 degrees of freedom full vehicle model. The control performance of the system was evaluated through simulations and the results were compared with the passive vehicle condition. These results highlight the feasibility of the presented control frame.

Ride Quality Evaluation of Seat Suspension Adopting Controllable Damper (제어 가능한 댐퍼를 적용한 시트 현가장치의 승차감 평가)

  • Han, Young-Min;Min, Chul-Gi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1199-1205
    • /
    • 2011
  • In the present work, a seat suspension system adopting semi-active damper is evaluated for driver's ride quality. A cylindrical type of ER(electrorheological) damper is designed and manufactured for the seat suspension of heavy vehicles. The governing equation is derived under consideration of human vibration. A sliding mode controller is then synthesized and experimentally realized on the manufactured ER seat suspension while a driver is sitting on the controlled seat. Ride quality is evaluated by fatigue decreased proficiency boundary, vibration dose value and crest factor utilizing weighted-acceleration according to ISO2631.

Semiactive MR Fluid Suspension System Using Frequency Shaped LQ Control (주파수 성형 LQ제어기를 이용한 반능동식 자기유변유체 현가 시스템)

  • Kim, Gi-Deok;Jeon, Do-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2274-2282
    • /
    • 2000
  • An MR(Magneto-Rheological) fluid damper is designed and applied to the semi-active suspension system of a 1/4 car model. The damping constant of the MR damper changes according to input current and the time delay of the damper is included in the system dynamics. The passive method, LQ control and Frequency shaped LQ control are compared in experiments. The advantage of the proposed frequency shaped LQ control is that the ride comfort improves in frequency range from 4 to 8Hz where human body is most sensitive and the driving safety improves around the resonance frequency of unsprung mass, 11Hz. The experiments using a 1/4 car model show the effectiveness of the algorithm.

Performance Evaluation of a Suspension Seat Controller Using ECU-in-the-Loop Simulation (ECU-in-the Loop Simulation을 사용한 운전석 현가제어기의 성능평가)

  • Baek, Woon-Kyung;Lee, Ji-Woong;Lee, Jong-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1170-1178
    • /
    • 2007
  • Repeated hardware tests and tuning, investing cost and time, are usually required to assure a satisfactory performance of the suspension seat. In this study, an EILS(ECU-in-the-loop) method was proposed to develop a controller for a semi-active suspension seat with a MR(magneto-rheological) damper. EILS system was developed using a real-time seat dynamics model communicating with ECU hardwares under a closed loop environment utilizing Matlab/Simulink and xPC $TargetBox^{TM}$. A sky-hook based control algorithm with optimized damping coefficients was verified to reduce the energy consumption and to improve the vibration response performance.

A Study on Vibration Control Performance of Macpherson Type Semi-Active Suspension System (맥퍼슨 타입 반 능동 현가장치의 진동제어 성능 고찰)

  • Dutta, Saikat;Han, Chulhee;Lee, TaeHoon;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • The paper studies a comparison analysis of semi-active control strategies for a Macpherson strut type suspension system consisting of MR(magneto-rheological) damper. As a first step, in order to formulate governing, a dynamic full model of a Macpherson strut is developed considering the kinematics. The nonlinear equation of motion of the strut is then linearized around the equilibrium point. A new adaptive moving sliding model controller is developed for fast response of the system. A newly proposed adaptive moving sliding mode control strategy is then compared with conventional sliding mode controller and skyhook controller. The comparison is made for two different types of road inputs; bump and random road profiles showing superior vibration control performance in time and frequency domains.

Performance Evaluation of 6WD Military Vehicle Featuring MR Damper (MR 댐퍼를 적용한 6WD 군용차량의 성능평가)

  • Ha, Sung-Boon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.460-465
    • /
    • 2008
  • This paper proposes a new type of MR (magentorheological) fluid based suspension system and applies it to military vehicle for vibration control. The suspension system consists of gas spring and MR damper. The nonlinear behavior of spring characteristics is evaluated with respect to the wheel travel and damping force model due to viscosity and yield stress of MR fluid is derived. Subsequently, a military vehicle of 6WD is adopted for the integration of the MR suspension system and its nonlinear dynamic model is establishes by considering vertical, pitch and roll motion. Then, a sky-hook controller associated with semi-active actuating condition is designed to reduce the vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, computer simulation is undertaken showing vibration control performance such as roll angle and pitch angle evaluated under bump and random road profiles.

  • PDF

Vibration Control of Vehicle Suspension Featuring Magnetorheological Dampers: Road Test Evaluation (MR 댐퍼를 적용한 자동차 현가장치의 진동제어 : 실차시험 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.980-985
    • /
    • 2008
  • This paper presents vehicle road test of a semi-active suspension system equipped with continuously controllable magnetorheological (MR) dampers. As a first step, front and rear MR dampers are designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial middle-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the MR dampers, the test vehicle is prepared for road test by integrating current suppliers, real-time data acquisition system and numerous sensors such as accelerometer and gyroscope. Subsequently, the manufactured four MR dampers (two for front parts and two for rear parts) are incorporated with the test vehicle and a skyhook control algorithm is formulated and realized in the data acquisition system. In order to emphasize practical aspect of the proposed MR suspension system, road tests are undertaken on proving grounds: bump and paved roads. The control responses are evaluated in both time and frequency domains by activating the MR dampers.

  • PDF

Vibration Control of Vehicle Suspension Featuring Magnetorheological Dampers : Road Test Evaluation (MR댐퍼를 적용한 자동차 현가장치의 진동제어 : 실차시험 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.235-242
    • /
    • 2009
  • This paper presents vehicle road test of a semi-active suspension system equipped with continuously controllable magnetorheological(MR) dampers. As a first step, front and rear MR dampers are designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial middle-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the MR dampers, the test vehicle is prepared for road test by integrating current suppliers, real-time data acquisition system and numerous sensors such as accelerometer and gyroscope. Subsequently, the manufactured four MR dampers(two for front parts and two for rear parts) are incorporated with the test vehicle and a skyhook control algorithm is formulated and realized in the data acquisition system. In order to emphasize practical aspect of the proposed MR suspension system, road tests are undertaken on proving grounds: bump and paved roads. The control responses are evaluated in both time and frequency domains by activating the MR dampers.