• Title/Summary/Keyword: Semi-active Damper

Search Result 296, Processing Time 0.028 seconds

Study on Active Damper System Applying DC-Motor (DC Motor를 이용한 능동형 댐퍼 시스템에 대한 연구)

  • Lee, Hak-Cheol;Jeon, Jin-Young;Jeong, Young-Suk
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.121-123
    • /
    • 2008
  • The suspension systems currently in use can be classified as passive, semi-active and active. The passive suspension systems are the most commonly used due their low price and high reliability. However, this system cannot assure the desired performance form a modern suspension system. An important improvement of suspension performance is achieved by the active systems. This paper treats active damper system and applying DC-Motor. In this system, all the energy for active control is supplied from the damper, which regenerates energy. And simulations by sky-hook control.

  • PDF

Cost-Effectiveness Evaluation of Semi-Active Control System for Cable-Stayed Bridge (사장교에 장착된 준능동형 제어시스템의 비용효율성 평가)

  • Hahm, Dae-Gi;Park, Won-Suk;Koh, Hyum-Moo;Ok, Seung-Yong;Park, Kwan-Soon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.388-395
    • /
    • 2005
  • This paper presents cost-effectiveness evaluation of semi-active control system for cable-stayed bridge under earthquake excitation. Bi-state control method with Linear Quadratic Gaussian(LQG) optimal controller is used for generic semi-active dampers. Cost-effectiveness of the structural control system is investigated by using the life-cycle cost(LCC) concept. The evaluation results show that the efficiency of semi-active control system is increased when the damage cost due to the failure of bridge system or the bridge importance is enlarged. It was also found that the damper cost had little influence on the cost-effectiveness of semi-active control system if it was relatively small to the initial construction cost.

  • PDF

An Experimental Study on the Performance of a Mixed Mode Type Small Scale MR Damper (복합모드형 소형 MR감쇠장치 성능에 관한 실험적 연구)

  • Lee, Sang-Hyun;Min, Kyung-Won;Lee, Myoung-Kyu;Park, Eun-Churn
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.461-468
    • /
    • 2005
  • In this paper, mixed mode magneto-rheological (MR) damper, which is applicable for vibration control of a small scale multi-story structure, is devised. First, the schematic configurations of the shear, flow, and mixed mode MR dampers are described with design constraints and then the analytical models to predict the field-dependent damping forces are derived for each type. Second, an appropriate size of the mixed mode MR damper is manufactured and its field-dependent damping characteristics are evaluated in time domain. Finally, the performance of the manufactured MR damper which is semi-actively applied to a small scale building excited by earthquake load, is numerically evaluated.

  • PDF

A novel hybrid control of M-TMD energy configuration for composite buildings

  • ZY Chen;Yahui Meng;Ruei-Yuan Wang;T. Chen
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.475-483
    • /
    • 2023
  • In this paper, a new energy-efficient semi-active hybrid bulk damper is developed that is cost-effective for use in structural applications. In this work, the possibility of active and semi-active component configurations combined with suitable control algorithms, especially vibration control methods, is explored. The equations of motion for a container bridge equipped with an MDOF Mass Tuned Damper (M-TMD) system are established, and the combination of excitation, adhesion, and control effects are performed by a proprietary package and commercial custom submodel software. Systematic methods for the synthesis of structural components and active systems have been used in many applications because of the main interest in designing efficient devices and high-performance structural systems. A rational strategy can be established by properly controlling the master injection frequency parameter. Simulation results show that the multiscale model approach is achieved and meets accuracy with high computational efficiency. The M-TMD system can significantly improve the overall response of constrained structures by modestly reducing the critical stress amplitude of the frame. This design can be believed to build affordable, safe, environmentally friendly, resilient, sustainable infrastructure and transportation.

Modeling of MR Damper Landing Gear Considering Incompletely Developed Fluid Flow (불완전 발달 유체 유동을 고려한 MR댐퍼 착륙장치 모델링)

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-18
    • /
    • 2021
  • A semi-active MR damper landing gear is a damper that generates a fluid damping force and a magnetic field control damping force when the MR fluid passes through annular flow paths. In the case of MR fluid passing through annular flow paths, an incompletely developed flow inevitably occurs, causing an error in calculating damper inner forces including the fluid damping force. This error results in an inaccurate design of damper structural parameters and control gain selection, resulting in deterioration of dynamic characteristics and shock absorption performance of the landing gear. In this paper, we derived a mathematical model of an MR damper landing gear considering additional damping force generated in the entrance region of annular flow paths of the MR damper. If the mathematical modeling derived from this paper is applied to the design and optimization process of an MR damper landing gear, excellent performance of the MR damper landing gear is expected.

Comparative Evaluation of Sky-Hook Controllers for a Full Car Model with Active or Semi-Active Suspension Systems (능동과 반능동 현가장치로 된 전차량 모델에 대한 스카이훅 제어기의 비교 평가)

  • Yun, Il-Jung;Im, Jae-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.614-621
    • /
    • 2001
  • The controllers for a full car 7-DOF model with 4 active or semi-active suspension units are designed and evaluated in this research. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-actvie, and on-off suspension systems, are analyzed and evaluated with respect to ride comfort. The vehicle dynamic performances are expressed by response curves to a bump input, performance indices for asphalt road input, and frequency characteristic curves. Heaving, rolling, and pitching inputs are applied to the vehicle dynamic system to evaluate frequency characteristics. The simulation results show that the ride quality of the sky-hook controller approaches that the full state feedback controller more closely in semi-active suspension system than in active suspension system. For the implementation of a vehicle with sky-hook suspension control systems in this paper, 7 velocity sensors are required to measure the states.

  • PDF

High-performance Magneto-rheological Damper Design (고성능 MR댐퍼의 설계)

  • 이종석;백운경
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.470-477
    • /
    • 2004
  • This study shows the design process of a MR damper for semi-active suspension systems. Damping force characteristics of the designed damper was predicted through the flow analysis and magnetic analysis. The predicted results were compared with the experimental results and the initial design specification was modified according to the results.

Semi-Active Vibration Control for HSR 350x (한국형고속열차 세미액티브 진동 제어)

  • Kim, Sang-Soo;Kim, Young-Kuk;Kim, Ki-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.169-173
    • /
    • 2007
  • To improve the riding comfort and to increase the speed of high-speed railway, it needs active suspension system for railway more and more. In Korea, Korean Train Express (KTX) was opened to commercial traffic 3years ago. Korea High-speed Railway (HSR 350x) was developed and succeeded 350km/h test run by Korean government and several related institute. With the increase of the speed, the vibration control of the high-speed railway becomes important to improve high ride quality. To meet this request, the authors suggest the installation of lateral semi-active damper to the power car of HSR 350x. The result shows better performance.

  • PDF

Optimal Design of Semi-Active Mid-Story Isolation System using Supervised Learning and Reinforcement Learning (지도학습과 강화학습을 이용한 준능동 중간층면진시스템의 최적설계)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.73-80
    • /
    • 2021
  • A mid-story isolation system was proposed for seismic response reduction of high-rise buildings and presented good control performance. Control performance of a mid-story isolation system was enhanced by introducing semi-active control devices into isolation systems. Seismic response reduction capacity of a semi-active mid-story isolation system mainly depends on effect of control algorithm. AI(Artificial Intelligence)-based control algorithm was developed for control of a semi-active mid-story isolation system in this study. For this research, an practical structure of Shiodome Sumitomo building in Japan which has a mid-story isolation system was used as an example structure. An MR (magnetorheological) damper was used to make a semi-active mid-story isolation system in example model. In numerical simulation, seismic response prediction model was generated by one of supervised learning model, i.e. an RNN (Recurrent Neural Network). Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm The numerical simulation results presented that the DQN algorithm can effectively control a semi-active mid-story isolation system resulting in successful reduction of seismic responses.