• Title/Summary/Keyword: Semi-Conservative Form

Search Result 5, Processing Time 0.019 seconds

AN ANALYSIS OF DISCRETIZATION EFFECT OF MOMENTUM CONVECTION TERM FOR MULTI-DIMENSIONAL TWO-PHASE FLOWS (운동량 방정식의 대류항 이산화 방법이 다차원 2상 유동 해석에 미치는 영향 분석)

  • Park, I.K.;Cho, H.K.;Yoon, H.Y.;Jeong, J.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.86-94
    • /
    • 2009
  • The non-conservative form of momentum equations is often used for some two-phase flow codes instead of a conservative form because of numerical convenience. Another non-conservative form, so called, a semi-conservative form can improve the numerical solution of these codes maintaining the numerical convenience. It is close to the conservative form but still maintains the feature of the non-conservative form. A semi-conservative form of the momentum equations and a non-conservative form of the momentum equations are implemented in CUPID[1] code. The numerical results of the semi-conservative and the non-conservative forms are compared against analytical solutions and the solutions of the FLUENT code that uses the conservative form. The results clearly showed that the semi-conservative form of the momentum equations provides better solutions than the non-conservative form, especially for heterogeneous two-phase flows.

Non-linear Vibration Analysis for the In-plane Motion of a Semi-circular Pipe Conveying Fluid (유체를 수송하는 반원형 곡선관의 면내운동에 대한 비선형 진동 해석)

  • 정두한;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.677-682
    • /
    • 2003
  • The non-linear dynamic characteristics of a semi-circular pipe conveying fluid are investigated when the pipe is clamped at both ends. To consider the geometric non-linearity for the radial and circumferential displacements, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived form the Galerkin method. The natural frequencies varying with the flow velocity are computed fen the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized- method. From these results, we should to describe the non-linear behavior to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

  • PDF

The Architectural Structure of Seonjeong-jeon in Changdeok Palace as a Ceremonial Hall (창덕궁 선정전의 의례 공간적 건축 구조)

  • Lee, Jong-Seo
    • Journal of architectural history
    • /
    • v.29 no.2
    • /
    • pp.39-52
    • /
    • 2020
  • Seonjeong-jeon, the semi-great hall in Changdeok Palace, was constructed in a highly formal and conservative style and accommodated official ceremonies. However, the contemporary modification of the building has distorted or eliminated features including the two side doors on the front, the floor coverings, and the throne base (Jwa-tap) that consisted the most significant part of the throne. Seonjeong-jeon originally had three doors that stood between each pair of columns on the front side, respectively. The courtiers accessed the building through the side doors, while the central door was exclusively designated for the king. However, the renovation in 1999 ignored the political context of the architectural form of the building and changed the side doors into windows, damaging the traditional structure inherited from the early Joseon Dynasty. Although the building currently has traditional wooden floor structure (Woomul-maru), it was originally covered with square brick tiles (Bang-jeon) before the Japanese occupation, following the customs of early Joseon Dynasty. The throne was placed to the north of the central door and consisted of the throne base and a decorative roof (Dang-ga). A canvas (Jang-ja), which featured the royal symbolic painting of Sun, Moon, and Five Peaks, was also installed between the two columns that connected the base and the roof. Nevertheless, only the columns and the blank canvas remain nowadays after the removal of the base.

Reliability Analysis of Temporary Structures Considering Uncertainty in Rotational Stiffness at Member Joints (부재 연결부 회전 강성의 불확실성을 고려한 가설 구조물의 신뢰성 해석)

  • Ryu, Seon-Ho;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.87-94
    • /
    • 2019
  • This study deals with the reliability analysis approach of the temporary structure that can consider the uncertainty in rotational stiffness at the joints of the members, for which the semi-rigid connections are modelled as rotational spring and its coefficient is treated as a random variable following uniform distribution. In addition, this study introduces a computational procedure of the effective length coefficient for more accurate buckling load according to connection conditions of the supporting members attached to the joint. From the results of this study, it can be seen that the failure probability of the joint-hinge model (Case 1) presented in the design standard is higher than that of the practical model (Case 5) considering the rotational stiffness at the joints. This implies that the design standard leads to a conservative design of the temporary structure. The results also confirmed that the failure probability of the vertical member, i.e., the most critical member, can be further reduced when the base connection is provided with a fixed end. The comparative results between FORM, SORM and MCS further demonstrated that FORM can have a high level of numerical efficiency while ensuring the accuracy of the solution, compared with SORM and MCS. Based on these results, the proposed approach can be used as an accurate and efficient reliability analysis method of the three dimensional temporary structure.

Early adjusting damping force for sloped rolling-type seismic isolators based on earthquake early warning information

  • Hsu, Ting-Yu;Huang, Chih-Hua;Wang, Shiang-Jung
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 2021
  • By means of installing sloped rolling-type seismic isolators (SRI), the horizontal acceleration transmitted to the to-be-protected object above can be effectively and significantly reduced under external disturbance. To prevent the maximum horizontal displacement response of SRI from reaching a threshold, designing large and conservative damping force for SRI might be required, which will also enlarge the transmitted acceleration response. In a word, when adopting seismic isolation, minimizing acceleration or displacement responses is always a trade-off. Therefore, this paper proposes that by exploiting the possible information provided by an earthquake early warning system, the damping force applied to SRI which can better control both acceleration and displacement responses might be determined in advance and accordingly adjusted in a semi-active control manner. By using a large number of ground motion records with peak ground acceleration not less than 80 gal, the numerical results present that the maximum horizontal displacement response of SRI is highly correlated with and proportional to some important parameters of input excitations, the velocity pulse energy rate and peak velocity in particular. A control law employing the basic form of hyperbolic tangent function and two objective functions are considered in this study for conceptually developing suitable control algorithms. Compared with the numerical results of simply designing a constant, large damping factor to prevent SRI from pounding, adopting the recommended control algorithms can have more than 60% reduction of acceleration responses in average under the excitations. More importantly, it is effective in reducing acceleration responses under approximately 98% of the excitations.