• 제목/요약/키워드: Semi-Analytical Method

검색결과 299건 처리시간 0.027초

Analytical solution for axisymmetric buckling of joined conical shells under axial compression

  • Kouchakzadeh, M.A.;Shakouri, M.
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.649-664
    • /
    • 2015
  • In this study, the authors present an analytical approach to find the axisymmetric buckling load of two joined isotropic conical shells under axial compression. The problem of two joined conical shells may be considered as the generalized form of joined cylindrical and conical shells with constant or stepped thicknesses. Thickness of each cone is constant; however it may be different from the thickness of the other cone. The boundary conditions are assumed to be simply supported with rigid rings. The governing equations for the conical shells are obtained and solved with an analytical approach. A simple closed-form expression is obtained for the buckling load of two joined truncated conical shells. Results are compared and validated with the numerical results of finite element method. The variation of buckling load with changes in the thickness and semi-vertex angles of the two cones is studied. Finally, application of the results in practical design and range of engineering validity are investigated.

반타원 표면균열 형상측정을 위한 유한요소 전기장 해석에 기초한 직류전위차법의 개발 (Development of the DCPD Method Based on Finite Element Analysis for Measuring Semi-Elliptical Surface Cracks)

  • 김영진;심도준;최재붕
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1147-1154
    • /
    • 2001
  • One of major problems in analyzing failure mechanism of real components is the accurate measurement of crack size and shape. The DCPD(Direct Current Potential Drop) method has been widely used for the crack measurement of a structure and finite element analysis has been used for the derivation of calibration equations, which relates the potential drop with the crack depth. In this paper, finite element analyses were performed for semi-elliptical surface cracks with various crack shapes(a/c) and crack depths(a/t). As a result, a calibration equation has been derived for the measurement of a semi-elliptical surface crack in wide plates. Analytical results are compared with experimental results to evaluate the validity and the applicability of the derived equation. The proposed method is expected to provide efficient and accurate measurement of a surface crack during crack growth.

준 경험적 방법에 의한 발파진동원의 특성과 구조물 동적 해석에 관한 연구 (A Study on Dynamic Structural Analysis for Blast Vibration by using Semi-Empirical Method)

  • 손성완;김준호;정석영;홍성경;김동용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.271-276
    • /
    • 2001
  • Most engineers, related to soil and civil dynamic field, have been interested in the dynamic response of building transmitted from soil and rock to structure due to blasting. However it is not easy to estimate the dynamic response of structures and utilities due to blasting by using analytical method because of difficulties of soil modeling, prediction of excitation force and so on. In this paper, dynamic response analysis have been performed to predict vibration levels of structure due to blasting and the semi-empirical method. which is based on vibration measurement data. has been employed to consider blast vibration characteristics.

  • PDF

Superharmonic and subharmonic vibration resonances of rotating stiffened FGM truncated conical shells

  • Hamid Aris;Habib Ahmadi
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.545-562
    • /
    • 2023
  • In this work, superharmonic and subharmonic resonance of rotating stiffened FGM truncated conical shells exposed to harmonic excitation in a thermal environment is investigated. Utilizing classical shell theory considering Coriolis acceleration and the centrifugal force, the governing equations are extracted. Non-linear model is formulated employing the von Kármán non-linear relations. In this study, to model the stiffener effects the smeared stiffened technique is utilized. The non-linear partial differential equations are discretized into non-linear ordinary differential equations by applying Galerkin's method. The method of multiple scales is utilized to examine the non-linear superharmonic and subharmonic resonances behavior of the conical shells. In this regard, the effects of the rotating speed of the shell on the frequency response plot are investigated. Also, the effects of different semi-vertex angles, force amplitude, volume-fraction index, and temperature variations on the frequency-response graph are examined for different rotating speeds of the stiffened FGM truncated conical shells.

Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells

  • Li, Haichao;Pang, Fuzhen;Du, Yuan;Gao, Cong
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.163-180
    • /
    • 2019
  • A semi analytical method is employed to analyze free vibration characteristics of uniform and stepped functionally graded circular cylindrical shells under complex boundary conditions. The analytical model is established based on multi-segment partitioning strategy and first-order shear deformation theory. The displacement functions are handled by unified Jacobi polynomials and Fourier series. In order to obtain continuous conditions and satisfy complex boundary conditions, the penalty method about spring technique is adopted. The solutions about free vibration behavior of functionally graded circular cylindrical shells were obtained by approach of Rayleigh-Ritz. To confirm the dependability and validity of present approach, numerical verifications and convergence studies are conducted on functionally graded cylindrical shells under various influencing factors such as boundaries, spring parameters et al. The present method apparently has rapid convergence ability and excellent stability, and the results of the paper are closely agreed with those obtained by FEM and published literatures.

Analysis of demountable steel and composite frames with semi-rigid bolted joints

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.363-380
    • /
    • 2018
  • This paper presented an integral design procedure for demountable bolted composite frames with semi-rigid joints. Moment-rotation relationships of beam-to-column joints were predicted with analytical models aiming to provide accurate and reliable analytical solutions. Among this, initial stiffness of beam-to-column joints was derived on the basis of Timoshenko's plate theory, and moment capacity was derived in accordance with Eurocodes. The predictions were validated with relevant test results prior to further applications. Frame analysis was conducted by using Abaqus software with material and geometrical nonlinearity considered. Variable lateral loads incorporating wind actions and earthquake actions in accordance with Australian Standards were adopted to evaluate the flexural behaviour of the composite frames. Strength and serviceability limit state criteria were utilized to verify configurations of designed models. A wide range of frames with the varied number of storeys and bays were thereafter programmed to ascertain bending moment envelopes under various load combinations. The analytical results suggest that the proposed approach is capable of predicting the moment-rotation performance of the semi-rigid joints reasonably well. Outcomes of the frame analysis indicate that the load combination with dead loads and live loads only leads to maximum sagging and hogging moment magnitudes in beams. As for lateral loads, wind actions are more crucial to dominate the design of the demountable composite frames than earthquake actions. No hogging moment reversal is expected in the composite beams given that the frames are designed properly. The proposed analysis procedure is demonstrated to be a simple and efficient method, which can be applied into engineering practice.

Nonlinear vibration of oscillatory systems using semi-analytical approach

  • Bayat, Mahmoud;Bayat, Mahdi;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.409-413
    • /
    • 2018
  • In this paper, He's Variational Approach (VA) is used to solve high nonlinear vibration equations. The proposed approach leads us to high accurate solution compared with other numerical methods. It has been established that this method works very well for whole range of initial amplitudes. The method is sufficient for both linear and nonlinear engineering problems. The accuracy of this method is shown graphically and the results tabulated and results compared with numerical solutions.

보조변수법을 이용한 Zwicker 라우드니스의 설계민감도 (Design Sensitivity Analysis of Zwicker's Loudness Using Adjoint Variable Method)

  • 왕세명;권대일;김좌일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1432-1436
    • /
    • 2006
  • Feasibility of optimizing Zwicker's loudness has been shown by using MSC/NASTRAN, SYSNOISE, and a semi-analytical design sensitivity by Wang and Kang. Design sensitivity analysis of Zwicker's loudness is developed by using ANSYS, COMET, and an adjoint variable method in order to reduce computation. A numerical example shows significant reduction of computation time for design sensitivity analysis.

  • PDF

A full path assessment approach for vibration serviceability and vibration control of footbridges

  • Zhu, Qiankun;Hui, Xiaoli;Du, Yongfeng;Zhang, Qiong
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.765-779
    • /
    • 2019
  • Most of the existing evaluation criteria of vibration serviceability rely on the peak acceleration of the structure rather than that of the people keeping their own body unmoved on the structure who is the real receiver of structural vibrations. In order to accurately assess the vibration serviceability, therefore, a full path assessment approach of vibration serviceability based on vibration source, path and receiver is not only tentatively proposed in this paper, taking the peak acceleration of receiver into account, but also introduce a probability procedure to provide more instructive information instead of a single value. In fact, semi-rigid supported on both sides of the structure is more consistent with the actual situation than simply supported or clamped due to the application of the prefabricated footbridge structures. So, the footbridge is regarded as a beam with semi-rigid supported on both sides in this paper. The differential quadrature-integral quadrature coupled method is not only to handle different type of boundary conditions, but also after being further modified via the introduction of an approximation procedure in this work, the time-varying system problem caused by human-structure interaction can be solved well. The analytical results of numerical simulations demonstrate that the modified differential quadrature-integral quadrature coupled method has higher reliability and accuracy compared with the mode superposition method. What's more, both of the two different passive control measures, the tuned mass damper and semi-rigid supported, have good performance for reducing vibrations. Most importantly, semi-rigid supported is easier to achieve the objective of reducing vibration compared with tuned mass damper in design stage of structure.

경비행기의 비행특성 분석 및 준경험적 분석 방법 비교 (A Comparison Study on the Semi-empirical Analysis Approach for the Flight Characteristics of a Light Airplane)

  • 이정훈
    • 항공우주시스템공학회지
    • /
    • 제16권3호
    • /
    • pp.1-9
    • /
    • 2022
  • 본 연구에서는 MDO 프레임워크 개발을 위하여 다양한 준경험적 방법에 근거한 해석적 방법으로 경비행기인 창공-91의 비행운동 특성 파라미터를 추출하고 비행시험 방법을 기준으로 비교하여 평가하였다. 비교 대상의 준경험적 분석 방법은 Perkins 방법, McCormick 방법, 그리고 Smetana 방법이며, 각각의 방법을 통하여 주요 안정성/조종성 미계수와 동안정 계수를 산출하였다. 이에 대한 비교 기준은 비행시험을 수행하여 취득한 데이터로부터 출력오차방법을 활용하여 비행운동 미계수와 동안정 계수를 추출하였다. 아울러 경비행기의 비행특성을 우리나라 국토교통부의 항공기기술기준(KAS, Korean Airworthiness Standard)의 항목과 미 군용의 MIL-F-8785C의 기준으로 분석하여 평가하였다.