• Title/Summary/Keyword: Semi-Analytical Method

Search Result 299, Processing Time 0.028 seconds

Rotating effects on hygro-mechanical vibration analysis of FG beams based on Euler-Bernoulli beam theory

  • Ehyaei, Javad;Farazmandnia, Navid;Jafari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.471-480
    • /
    • 2017
  • This paper investigates free vibration characteristics of a rotating functionally graded (FG) beam in hygro environments. In the present study, material properties of the FG beam vary continuously through thickness direction according to the power-law which approximates material properties of FG beam. The governing differential equations of motion are derived based on Euler-Bernoulli beam theory and using the Hamilton's principle which solved utilizing a semi-analytical technique called the Differential Transform Method (DTM). In order to verify the competency and accuracy of the current analysis, a comparative study with previous researches are performed and good agreement is observed. Influences of Several important parameters such as power-law exponent, hygro environment, rotational speed and slenderness ratio on natural frequencies are investigated and discussed in detail. It is concluded that these effects play significant role on dynamic behavior of rotating FG beam in the hygro environments. Numerical results are tabulated in several tables and figures that can be serving as benchmarks for future analyses of rotating FG beams in the hygro environments.

Fluid-structure coupling of concentric double FGM shells with different lengths

  • Moshkelgosha, Ehsan;Askari, Ehsan;Jeong, Kyeong-Hoon;Shafiee, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.231-244
    • /
    • 2017
  • The aim of this study is to develop a semi-analytical method to investigate fluid-structure coupling of concentric double shells with different lengths and elastic behaviours. Co-axial shells constitute a cylindrical circular container and a baffle submerged inside the stored fluid. The container shell is made of functionally graded materials with mechanical properties changing through its thickness continuously. The baffle made of steel is fixed along its top edge and submerged inside fluid such that its lower edge freely moves. The developed approach is verified using a commercial finite element computer code. Although the model is presented for a specific case in the present work, it can be generalized to investigate coupling of shell-plate structures via fluid. It is shown that the coupling between concentric shells occurs only when they vibrate in a same circumferential mode number, n. It is also revealed that the normalized vibration amplitude of the inner shell is about the same as that of the outer shell, for narrower radial gaps. Moreover, the natural frequencies of the fluid-coupled system gradually decrease and converge to the certain values as the gradient index increases.

Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.773-796
    • /
    • 2014
  • This paper deals with free vibration analysis of continuous grading fiber reinforced (CGFR) and bi-directional FG annular sector plates on two-parameter elastic foundations under various boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Results indicate that the non-dimensional natural frequency parameter of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. It results that the CGFR plate attains natural frequency higher than those of traditional discretely laminated composite ones and this can be a benefit when higher stiffness of the plate is the goal and that is due to the reduction in spatial mismatch of material properties. Moreover, it is shown that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional one-dimensional functionally graded material. The multidirectional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material. The new results can be used as benchmark solutions for future researches.

BINARY MICROLENSING EFFECTS I. CAUSTICS AND THE FLUX FACTOR K

  • LEE DONG WOOK;CHANG KYONG AE;KIM SANG JOON
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.1
    • /
    • pp.27-37
    • /
    • 1998
  • We have made semi-analytical studies to investigate the configurations of caustics and the probability distribution of the flux factor K for the binary microlensing including external shears. A parametric equation of critical curve is derived in a 4th order complex polynomial. We present the topological dependencies of the caustics for selected gamma parameters (0, 0.3, 0.6, 1.3, 2.0, and 2.5) and convergence terms (0., 0.4, 0.8, 1.2, 1.6, and 2.0). For the purpose of analyzing the efficiency of High Amplification Event (HAE) on each caustics, we examine the probability distribution of the flux factor by a Monte Carlo method. Changing the separation of the binary system from 0.8 to 1.3 (in normalied unit), we examine the probability distribution of the K-values in various gamma parameters. The relationship between gamma parameters, seperations and their probabilties of the flux factor K have been studied. Our results show that the relatively higher K values (K>1.5) are increased as increasing the separation of the binary system. We therfore conclude that, in the N-body microlensing, the probabilities of higher HAEs are inversely proportional to the star density as well. We also point out that the present research might be used as a preliminary step toward investigating heavy N-body microlensing simulations.

  • PDF

Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid

  • Shafiee, Ali A.;Daneshmand, Farhang;Askari, Ehsan;Mahzoon, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.53-71
    • /
    • 2014
  • A semi-analytical method is developed to consider free vibrations of a functionally graded elastic plate resting on Winkler elastic foundation and in contact with a quiescent fluid. Material properties are assumed to be graded distribution along the thickness direction according to a power-law in terms of the volume fractions of the constituents. The fluid is considered to be incompressible and inviscid. In the analysis, the effect of an in-plane force in the plate due to the weight of the fluid is taken into account. By satisfying the compatibility conditions along the interface of fluid and plate, the fluid-structure interaction is taken into account and natural frequencies and mode shapes of the coupled system are acquired by employing energy methods. The results obtained from the present approach are verified by those from a finite element analysis. Besides, the effects of volume fractions of functionally graded materials, Winkler foundation stiffness and in-plane forces on the dynamic of plate are elucidated.

The Unsteady 2-D Numerical Analysis in a Horizontal Pipe with Thermal Stratification Phenomena (열성층현상이 존재하는 수평배관내에서의 비정상 2차원 수치해석)

  • Youm, Hag-Ki;Park, Man-Heung;Kim, Sang-Nung
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.27-35
    • /
    • 1996
  • In this paper, an unsteady analytical model for the thermal stratification in the pressurizer surge line of PWR plant has been proposed to investigate the temperature profile, flow characteristics, and thermal stress in the pipe. In this model, the interface level, between hot and cold fluid, is assumed to be a function of time while the other models had developed for time independent or steady state. The dimensionless governing equations are solved by using a SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The analysis result for an example shows that the maximum dimensionless temperature difference is about 0.78 between hot and cold sections of pipe wall and the maximum thermal stress by thermal stratification is calculated about 276 MPa at the dimensionless time 27.0 under given conditions.

  • PDF

Plastic Limit Pressure Solutions for Cracked Pipes Using 3-D Finite Element Method (3차원 유한요소해석을 통해 도출한 균열배관의 소성한계압력식)

  • Shim, Do-Jun;Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • Based on detailed FE limit analyses, the present paper provides tractable approximations fer plastic limit pressure solutions fur axially through-wall-cracked pipe; axially (inner) surface-cracked pipe; circumferentially through-wall-cracked pipe; and circumferentially (inner) surface-cracked pipe. In particular, for surface crack problems, the effect of the crack shape, the semi-elliptical shape or the rectangular shape, on the limit pressure is quantified. Comparisons with existing analytical and empirical solutions show a large discrepancy in circumferential short through-wall cracks and in surface cracks (both axial and circumferential). Being based on detailed 3-D FE limit analysis, the present solutions are believed to be the most accurate, and thus to be valuable information not only for plastic collapse analysis of pressurised piping but also for estimating non-linear fracture mechanics parameters based on the reference stress approach.

Vibrational characteristic of FG porous conical shells using Donnell's shell theory

  • Yan, Kai;Zhang, Yao;Cai, Hao;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.249-260
    • /
    • 2020
  • The main purpose of this research work is to investigate the free vibration of conical shell structures reinforced by graphene platelets (GPLs) and the elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. To this end, a shell model is developed based on Donnell's theory. To solve the problem, the analytical Galerkin method is employed together with beam mode shapes as weighting functions. Due to importance of boundary conditions upon mechanical behavior of nanostructures, the analysis is carried out for different boundary conditions. The effects of boundary conditions, semi vertex angle, porosity distribution and graphene platelets on the response of conical shell structures are explored. The correctness of the obtained results is checked via comparing with existing data in the literature and good agreement is eventuated. The effectiveness and the accuracy of the present approach have been demonstrated and it is shown that the Donnell's shell theory is efficient, robust and accurate in terms of nanocomposite problems.

Semi-rigid connection modeling for steel frameworks

  • Liu, Yuxin
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.431-457
    • /
    • 2010
  • This article provides a discussion of the mathematic modeling of connections for designing and qualifying structures, systems, and components subject to monotonic or cyclic loading. To characterize the force-deformation behavior of connections under monotonic loading, a review of the Ramberg-Osgood, Richard-Abbott, and Menegotto-Pinto models is conducted, and it is shown that these nonlinear functions can be mathematically derived by scaling up or down a linear force-deformation function. A generalized four-parameter model for simulating connection behavior is investigated to facilitate nonlinear regression analysis. In order to perform seismic analysis of frameworks, a hysteretic model accounting for loading, unloading, and reloading is described using the established monotonic model. For preliminary analysis, a method is provided to quickly determine the model parameters that fit approximately with the observed data. To reach more accurate values of the parameters, the methods of nonlinear regression analysis are investigated and the modified Levenberg-Marquardt and separable nonlinear least-square algorithms are applied in determining the model parameters. Example case studies illustrate the procedure for the computation through the use of experimental/analytical data taken form the literature. Transformation of connection curves from the three-parameter model to the four-parameter model for structural analysis is conducted based on the modeling of connections subject to fire.

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel

  • Kashkoli, Mosayeb Davoudi;Tahan, Khosro Naderan;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.701-715
    • /
    • 2019
  • Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.