• Title/Summary/Keyword: Semantic-Based Information Extraction

Search Result 137, Processing Time 0.021 seconds

Improving the effectiveness of document extraction summary based on the amount of sentence information (문장 정보량 기반 문서 추출 요약의 효과성 제고)

  • Kim, Eun Hee;Lim, Myung Jin;Shin, Ju Hyun
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.31-38
    • /
    • 2022
  • In the document extraction summary study, various methods for selecting important sentences based on the relationship between sentences were proposed. In the Korean document summary using the summation similarity of sentences, the summation similarity of the sentences was regarded as the amount of sentence information, and the summary sentences were extracted by selecting important sentences based on this. However, the problem is that it does not take into account the various importance that each sentence contributes to the entire document. Therefore, in this study, we propose a document extraction summary method that provides a summary by selecting important sentences based on the amount of quantitative and semantic information in the sentence. As a result, the extracted sentence agreement was 58.56% and the ROUGE-L score was 34, which was superior to the method using only the combined similarity. Compared to the deep learning-based method, the extraction method is lighter, but the performance is similar. Through this, it was confirmed that the method of compressing information based on semantic similarity between sentences is an important approach in document extraction summary. In addition, based on the quickly extracted summary, the document generation summary step can be effectively performed.

Sensor Fusion-Based Semantic Map Building (센서융합을 통한 시맨틱 지도의 작성)

  • Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.277-282
    • /
    • 2011
  • This paper describes a sensor fusion-based semantic map building which can improve the capabilities of a mobile robot in various domains including localization, path-planning and mapping. To build a semantic map, various environmental information, such as doors and cliff areas, should be extracted autonomously. Therefore, we propose a method to detect doors, cliff areas and robust visual features using a laser scanner and a vision sensor. The GHT (General Hough Transform) based recognition of door handles and the geometrical features of a door are used to detect doors. To detect the cliff area and robust visual features, the tilting laser scanner and SIFT features are used, respectively. The proposed method was verified by various experiments and showed that the robot could build a semantic map autonomously in various indoor environments.

Lightweight Intrusion Detection of Rootkit with VMI-Based Driver Separation Mechanism

  • Cui, Chaoyuan;Wu, Yun;Li, Yonggang;Sun, Bingyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1722-1741
    • /
    • 2017
  • Intrusion detection techniques based on virtual machine introspection (VMI) provide high temper-resistance in comparison with traditional in-host anti-virus tools. However, the presence of semantic gap also leads to the performance and compatibility problems. In order to map raw bits of hardware to meaningful information of virtual machine, detailed knowledge of different guest OS is required. In this work, we present VDSM, a lightweight and general approach based on driver separation mechanism: divide semantic view reconstruction into online driver of view generation and offline driver of semantics extraction. We have developed a prototype of VDSM and used it to do intrusion detection on 13 operation systems. The evaluation results show VDSM is effective and practical with a small performance overhead.

Opinion Extraction based on Syntactic Pieces

  • Aoki, Suguru;Yamamoto, Kazuhide
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.76-85
    • /
    • 2007
  • This paper addresses a task of opinion extraction from given documents and its positive/negative classification. We propose a sentence classification method using a notion of syntactic piece. Syntactic piece is a minimum unit of structure, and is used as an alternative processing unit of n-gram and whole tree structure. We compute its semantic orientation, and classify opinion sentences into positive or negative. We have conducted an experiment on more than 5000 opinion sentences of multiple domains, and have proven that our approach attains high performance at 91% precision.

  • PDF

Bird's Eye View Semantic Segmentation based on Improved Transformer for Automatic Annotation

  • Tianjiao Liang;Weiguo Pan;Hong Bao;Xinyue Fan;Han Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.1996-2015
    • /
    • 2023
  • High-definition (HD) maps can provide precise road information that enables an autonomous driving system to effectively navigate a vehicle. Recent research has focused on leveraging semantic segmentation to achieve automatic annotation of HD maps. However, the existing methods suffer from low recognition accuracy in automatic driving scenarios, leading to inefficient annotation processes. In this paper, we propose a novel semantic segmentation method for automatic HD map annotation. Our approach introduces a new encoder, known as the convolutional transformer hybrid encoder, to enhance the model's feature extraction capabilities. Additionally, we propose a multi-level fusion module that enables the model to aggregate different levels of detail and semantic information. Furthermore, we present a novel decoupled boundary joint decoder to improve the model's ability to handle the boundary between categories. To evaluate our method, we conducted experiments using the Bird's Eye View point cloud images dataset and Cityscapes dataset. Comparative analysis against stateof-the-art methods demonstrates that our model achieves the highest performance. Specifically, our model achieves an mIoU of 56.26%, surpassing the results of SegFormer with an mIoU of 1.47%. This innovative promises to significantly enhance the efficiency of HD map automatic annotation.

A Development Method of Framework for Collecting, Extracting, and Classifying Social Contents

  • Cho, Eun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.163-170
    • /
    • 2021
  • As a big data is being used in various industries, big data market is expanding from hardware to infrastructure software to service software. Especially it is expanding into a huge platform market that provides applications for holistic and intuitive visualizations such as big data meaning interpretation understandability, and analysis results. Demand for big data extraction and analysis using social media such as SNS is very active not only for companies but also for individuals. However despite such high demand for the collection and analysis of social media data for user trend analysis and marketing, there is a lack of research to address the difficulty of dynamic interlocking and the complexity of building and operating software platforms due to the heterogeneity of various social media service interfaces. In this paper, we propose a method for developing a framework to operate the process from collection to extraction and classification of social media data. The proposed framework solves the problem of heterogeneous social media data collection channels through adapter patterns, and improves the accuracy of social topic extraction and classification through semantic association-based extraction techniques and topic association-based classification techniques.

A Protein-Protein Interaction Extraction Approach Based on Large Pre-trained Language Model and Adversarial Training

  • Tang, Zhan;Guo, Xuchao;Bai, Zhao;Diao, Lei;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.771-791
    • /
    • 2022
  • Protein-protein interaction (PPI) extraction from original text is important for revealing the molecular mechanism of biological processes. With the rapid growth of biomedical literature, manually extracting PPI has become more time-consuming and laborious. Therefore, the automatic PPI extraction from the raw literature through natural language processing technology has attracted the attention of the majority of researchers. We propose a PPI extraction model based on the large pre-trained language model and adversarial training. It enhances the learning of semantic and syntactic features using BioBERT pre-trained weights, which are built on large-scale domain corpora, and adversarial perturbations are applied to the embedding layer to improve the robustness of the model. Experimental results showed that the proposed model achieved the highest F1 scores (83.93% and 90.31%) on two corpora with large sample sizes, namely, AIMed and BioInfer, respectively, compared with the previous method. It also achieved comparable performance on three corpora with small sample sizes, namely, HPRD50, IEPA, and LLL.

FEROM: Feature Extraction and Refinement for Opinion Mining

  • Jeong, Ha-Na;Shin, Dong-Wook;Choi, Joong-Min
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.720-730
    • /
    • 2011
  • Opinion mining involves the analysis of customer opinions using product reviews and provides meaningful information including the polarity of the opinions. In opinion mining, feature extraction is important since the customers do not normally express their product opinions holistically but separately according to its individual features. However, previous research on feature-based opinion mining has not had good results due to drawbacks, such as selecting a feature considering only syntactical grammar information or treating features with similar meanings as different. To solve these problems, this paper proposes an enhanced feature extraction and refinement method called FEROM that effectively extracts correct features from review data by exploiting both grammatical properties and semantic characteristics of feature words and refines the features by recognizing and merging similar ones. A series of experiments performed on actual online review data demonstrated that FEROM is highly effective at extracting and refining features for analyzing customer review data and eventually contributes to accurate and functional opinion mining.

Visual Semantic Based 3D Video Retrieval System Using HDFS

  • Ranjith Kumar, C.;Suguna, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3806-3825
    • /
    • 2016
  • This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose we intent to hitch on BOVW and Mapreduce in 3D framework. Here, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and produce results .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we fiture the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

Semantic Ontology Speech Information Extraction using Non-parametric Correlation Coefficient (비모수적 상관계수를 이용한 시맨틱 온톨로지 음성 정보 추출)

  • Lee, Byungwook
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.147-151
    • /
    • 2013
  • On retrieving high frequency keywords in information retrieval system, mismatchings to user's request are problems because of the various meanings of keywords in the existing ontology configuration. In this paper, it is to construct personnel selection ontology and rules in personnel management which are composed of various concepts and knowledges based on semantic web technology and suggest selection procedures to support these rules and knowledge retrieval system to verify suitability of selection results. This system utilizes a method of extraction of speech features by using non-parametric correlation coefficient. This proposed method has been validated by showing that the result average SNR of the experiment evaluation of the proposed techniques was shown to be decreased by .752dB.