• Title/Summary/Keyword: Semantic tagging

Search Result 37, Processing Time 0.026 seconds

Korean Compound Noun Decomposition and Semantic Tagging System using User-Word Intelligent Network (U-WIN을 이용한 한국어 복합명사 분해 및 의미태깅 시스템)

  • Lee, Yong-Hoon;Ock, Cheol-Young;Lee, Eung-Bong
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.63-76
    • /
    • 2012
  • We propose a Korean compound noun semantic tagging system using statistical compound noun decomposition and semantic relation information extracted from a lexical semantic network(U-WIN) and dictionary definitions. The system consists of three phases including compound noun decomposition, semantic constraint, and semantic tagging. In compound noun decomposition, best candidates are selected using noun location frequencies extracted from a Sejong corpus, and re-decomposes noun for semantic constraint and restores foreign nouns. The semantic constraints phase finds possible semantic combinations by using origin information in dictionary and Naive Bayes Classifier, in order to decrease the computation time and increase the accuracy of semantic tagging. The semantic tagging phase calculates the semantic similarity between decomposed nouns and decides the semantic tags. We have constructed 40,717 experimental compound nouns data set from Standard Korean Language Dictionary, which consists of more than 3 characters and is semantically tagged. From the experiments, the accuracy of compound noun decomposition is 99.26%, and the accuracy of semantic tagging is 95.38% respectively.

Improved Character-Based Neural Network for POS Tagging on Morphologically Rich Languages

  • Samat Ali;Alim Murat
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.355-369
    • /
    • 2023
  • Since the widespread adoption of deep-learning and related distributed representation, there have been substantial advancements in part-of-speech (POS) tagging for many languages. When training word representations, morphology and shape are typically ignored, as these representations rely primarily on collecting syntactic and semantic aspects of words. However, for tasks like POS tagging, notably in morphologically rich and resource-limited language environments, the intra-word information is essential. In this study, we introduce a deep neural network (DNN) for POS tagging that learns character-level word representations and combines them with general word representations. Using the proposed approach and omitting hand-crafted features, we achieve 90.47%, 80.16%, and 79.32% accuracy on our own dataset for three morphologically rich languages: Uyghur, Uzbek, and Kyrgyz. The experimental results reveal that the presented character-based strategy greatly improves POS tagging performance for several morphologically rich languages (MRL) where character information is significant. Furthermore, when compared to the previously reported state-of-the-art POS tagging results for Turkish on the METU Turkish Treebank dataset, the proposed approach improved on the prior work slightly. As a result, the experimental results indicate that character-based representations outperform word-level representations for MRL performance. Our technique is also robust towards the-out-of-vocabulary issues and performs better on manually edited text.

Automatic In-Text Keyword Tagging based on Information Retrieval

  • Kim, Jin-Suk;Jin, Du-Seok;Kim, Kwang-Young;Choe, Ho-Seop
    • Journal of Information Processing Systems
    • /
    • v.5 no.3
    • /
    • pp.159-166
    • /
    • 2009
  • As shown in Wikipedia, tagging or cross-linking through major keywords in a document collection improves not only the readability of documents but also responsive and adaptive navigation among related documents. In recent years, the Semantic Web has increased the importance of social tagging as a key feature of the Web 2.0 and, as its crucial phenotype, Tag Cloud has emerged to the public. In this paper we provide an efficient method of automated in-text keyword tagging based on large-scale controlled term collection or keyword dictionary, where the computational complexity of O(mN) - if a pattern matching algorithm is used - can be reduced to O(mlogN) - if an Information Retrieval technique is adopted - while m is the length of target document and N is the total number of candidate terms to be tagged. The result shows that automatic in-text tagging with keywords filtered by Information Retrieval speeds up to about 6 $\sim$ 40 times compared with the fastest pattern matching algorithm.

A Method for Requirements Traceability for Reuse of Artifacts using Requirements-Ontology-based Semantic Tagging (요구사항 온톨로지 기반의 시맨틱 태깅을 활용한 산출물의 재사용성 지원을 위한 요구사항추적 방법)

  • Lee, Jun-Ki;Cho, Hae-Kyung;Ko, In-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.6
    • /
    • pp.357-365
    • /
    • 2008
  • Requirements traceability enables to reuse various kinds of software artifacts, which are the results from software development life cycle, rather than reuse source code only. To support requirements traceability for reuse of software artifacts, 1) artifacts should be described based on requirements and 2) a requirements tracing method should be supported. In this paper, we provide a description model for annotating requirements information to software artifacts by using requirements ontology. We also provide semantic tagging method users to efficiently annotate artifacts with the requirements ontology. And we finally present how requirements traceability is supported based on requirements ontology and also suggest the system architecture for requirements traceability support.

Automatic Tagging and Tag Recommendation Techniques Using Tag Ontology (태그 온톨로지를 이용한 자동 태깅 및 태그 추천 기법)

  • Kim, Jae-Seung;Mun, Hyeon-Jeong;Woo, Tae-Yong
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.167-179
    • /
    • 2009
  • This paper introduces techniques to recommend standardized tags using tag ontology. Tag recommendation consists of TWCIDF and TWCITC; the former technique automatically tags a large quantity of already existing document groups, and the latter recommends tagging for new documents. Tag groups are created through several processes, including preprocessing, standardization using tag ontology, automatic tagging and defining ranks for recommendation. In the preprocessing process, in order to search semantic compound nouns, words are combined to establish basic word groups. In the standardization process, typographical errors and similar words are processed. As a result of experiments conducted on the basis of techniques presented in this paper, it is proved that real-time automatic tagging and tag recommendation is possible while guaranteeing the accuracy of tag recommendation.

  • PDF

Design of GeoSpatial Tagging and Retrieval Framework for GeoSemantic Web (GeoSemantic Web을 위한 공간정보태깅 및 검색 프레임워크의 설계)

  • Ha, Su-Woo;Ha, Tae-Seok;Yang, Pyung-Woo;Jeong, Yong-Hee;Jeong, Hae-Choon;Nam, Kwang-Woo
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.09a
    • /
    • pp.340-343
    • /
    • 2010
  • 이 논문은 GeoSemantic Web을 위한 공간정보 태깅 및 검색 프레임워크를 제안한다. 웹상의 문서들은 다양한 공간정보를 포함하고 있으며, 이러한 텍스트 공간정보를 실제 공간정보로 변환하여 태깅함으로서 공간정보시스템을 웹의 영역까지 확장할 수 있다. 즉, 기존의 GIS와 결합하여 자신과 가까운 문서의 정보를 검색 또는 관심주제의 문서내 위치 등을 확인하는데 사용할 수 있으며, 이 공간정보를 이용하여 Semantic Web의 지식 링크와 연결하기 위한 기본 시스템으로 이용될 수 있다.

  • PDF

An Efficient Method of IR-based Automated Keyword Tagging (정보검색 기법을 이용한 효율적인 자동 키워드 태깅)

  • Kim, Jinsuk;Choe, Ho-Seop;You, Beom-Jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.24-27
    • /
    • 2008
  • As shown in Wikipedia, tagging or cross-linking through major key-words improves the readability of documents. Recently, the Semantic Web rises the importance of social tagging as a key feature of the Web 2.0 and Tag Cloud has emerged as its crucial phenotype. In this paper we provides an efficient method of automated keyword tagging based on controlled term collection, where the computational complexity of O(mN) - if pattern matching algorithm is used - can be reduced to O(mlogN) - if Information Retrieval is adopted - while m is the length of target document and N is the total number of candidate terms to be tagged. The result shows that IR-based tagging speeds up 5.6 times compared with fast pattern matching algorithm.

  • PDF

A Study on Recommendation Method Based on Web 3.0

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.43-51
    • /
    • 2012
  • Web 3.0 is the next-generation of the World Wide Web and is included two main platforms, semantic technologies and social computing environment. The basic idea of web 3.0 is to define structure data and link them in order to more effective discovery, automation, integration, and reuse across various applications. The semantic technologies represent open standards that can be applied on the top of the web. The social computing environment allows human-machine co-operations and organizing a large number of the social web communities. In the recent years, recommender systems have been combined with ontologies to further improve the recommendation by adding semantics to the context on the web 3.0. In this paper, we study previous researches about recommendation method and propose a recommendation method based on web 3.0. Our method scores documents based on context tags and social network services. Our social scoring model is computed by both a tagging score of a document and a tagging score of a document that was tagged by a user's friends.

A Semi-Automatic Semantic Mark Tagging System for Building Dialogue Corpus (대화 말뭉치 구축을 위한 반자동 의미표지 태깅 시스템)

  • Park, Junhyeok;Lee, Songwook;Lim, Yoonseob;Choi, Jongsuk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.5
    • /
    • pp.213-222
    • /
    • 2019
  • Determining the meaning of a keyword in a speech dialogue system is an important technology for the future implementation of an intelligent speech dialogue interface. After extracting keywords to grasp intention from user's utterance, the intention of utterance is determined by using the semantic mark of keyword. One keyword can have several semantic marks, and we regard the task of attaching the correct semantic mark to the user's intentions on these keyword as a problem of word sense disambiguation. In this study, about 23% of all keywords in the corpus is manually tagged to build a semantic mark dictionary, a synonym dictionary, and a context vector dictionary, and then the remaining 77% of all keywords is automatically tagged. The semantic mark of a keyword is determined by calculating the context vector similarity from the context vector dictionary. For an unregistered keyword, the semantic mark of the most similar keyword is attached using a synonym dictionary. We compare the performance of the system with manually constructed training set and semi-automatically expanded training set by selecting 3 high-frequency keywords and 3 low-frequency keywords in the corpus. In experiments, we obtained accuracy of 54.4% with manually constructed training set and 50.0% with semi-automatically expanded training set.