• 제목/요약/키워드: Semantic recognition

검색결과 197건 처리시간 0.03초

Encoder Type Semantic Segmentation Algorithm Using Multi-scale Learning Type for Road Surface Damage Recognition (도로 노면 파손 인식을 위한 Multi-scale 학습 방식의 암호화 형식 의미론적 분할 알고리즘)

  • Shim, Seungbo;Song, Young Eun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • 제19권2호
    • /
    • pp.89-103
    • /
    • 2020
  • As we face an aging society, the demand for personal mobility for disabled and aged people is increasing. In fact, as of 2017, the number of electric wheelchair in the country continues to increase to 90,000. However, people with disabilities and seniors are more likely to have accidents while driving, because their judgment and coordination are inferior to normal people. One of the causes of the accident is the interference of personal vehicle steering control due to unbalanced road surface conditions. In this paper, we introduce a encoder type semantic segmentation algorithm that can recognize road conditions at high speed to prevent such accidents. To this end, more than 1,500 training data and 150 test data including road surface damage were newly secured. With the data, we proposed a deep neural network composed of encoder stages, unlike the Auto-encoding type consisting of encoder and decoder stages. Compared to the conventional method, this deep neural network has a 4.45% increase in mean accuracy, a 59.2% decrease in parameters, and an 11.9% increase in computation speed. It is expected that safe personal transportation will be come soon by utilizing such high speed algorithm.

A Study on the Social Perception of Creating Artificial Intelligence Art: Using Semantic Network Analysis (인공지능 미술창작에 대한 사회적 인식 연구 - 언어 네트워크 분석을 중심으로 -)

  • Kim, Won Jae;Lee, Jin Woo
    • Korean Association of Arts Management
    • /
    • 제59호
    • /
    • pp.5-31
    • /
    • 2021
  • The purpose of this study is to analyze social perceptions and discourses about creating arts in the era of artificial intelligence with making an implication of responding to the emergence of artificial intelligence. We conceptually understand the principles and limitations of creating visual arts using artificial intelligence whilst this paper addresses ai art in the social context by borrowing the theoretical lens from the sociology of arts. This article considers 472 newspapers about artificial intelligence art as the main data, which are interpreted through semantic network analysis. The analysis of this research shows that it is a controversial issue regarding who/which creates the artworks between humans and computers. However, judging from the dominant influence of a group of words representing the recognition of intellectual property rights, we have detected that social awareness is formed around the perspective of considering artificial intelligence creates visual arts rather than artists. In addition, based on the close relationship between the cluster and the cluster reflecting institutional support, we confirm that the discourse about artificial intelligence art is limited to technological development and legal system maintenance. Thus, this study suggests the need for defining artificial intelligence as the medium of art and constructing policy discourses on artificial intelligence art as an artistic genre.

Efficient Representation and Matching of Object Movement using Shape Sequence Descriptor (모양 시퀀스 기술자를 이용한 효과적인 동작 표현 및 검색 방법)

  • Choi, Min-Seok
    • The KIPS Transactions:PartB
    • /
    • 제15B권5호
    • /
    • pp.391-396
    • /
    • 2008
  • Motion of object in a video clip often plays an important role in characterizing the content of the clip. A number of methods have been developed to analyze and retrieve video contents using motion information. However, most of these methods focused more on the analysis of direction or trajectory of motion but less on the analysis of the movement of an object itself. In this paper, we propose the shape sequence descriptor to describe and compare the movement based on the shape deformation caused by object motion along the time. A movement information is first represented a sequence of 2D shape of object extracted from input image sequence, and then 2D shape information is converted 1D shape feature using the shape descriptor. The shape sequence descriptor is obtained from the shape descriptor sequence by frequency transform along the time. Our experiment results show that the proposed method can be very simple and effective to describe the object movement and can be applicable to semantic applications such as content-based video retrieval and human movement recognition.

Recognition of Answer Type for WiseQA (WiseQA를 위한 정답유형 인식)

  • Heo, Jeong;Ryu, Pum Mo;Kim, Hyun Ki;Ock, Cheol Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제4권7호
    • /
    • pp.283-290
    • /
    • 2015
  • In this paper, we propose a hybrid method for the recognition of answer types in the WiseQA system. The answer types are classified into two categories: the lexical answer type (LAT) and the semantic answer type (SAT). This paper proposes two models for the LAT detection. One is a rule-based model using question focuses. The other is a machine learning model based on sequence labeling. We also propose two models for the SAT classification. They are a machine learning model based on multiclass classification and a filtering-rule model based on the lexical answer type. The performance of the LAT detection and the SAT classification shows F1-score of 82.47% and precision of 77.13%, respectively. Compared with IBM Watson for the performance of the LAT, the precision is 1.0% lower and the recall is 7.4% higher.

Ontology and Sequential Rule Based Streaming Media Event Recognition (온톨로지 및 순서 규칙 기반 대용량 스트리밍 미디어 이벤트 인지)

  • Soh, Chi-Seung;Park, Hyun-Kyu;Park, Young-Tack
    • Journal of KIISE
    • /
    • 제43권4호
    • /
    • pp.470-479
    • /
    • 2016
  • As the number of various types of media data such as UCC (User Created Contents) increases, research is actively being carried out in many different fields so as to provide meaningful media services. Amidst these studies, a semantic web-based media classification approach has been proposed; however, it encounters some limitations in video classification because of its underlying ontology derived from meta-information such as video tag and title. In this paper, we define recognized objects in a video and activity that is composed of video objects in a shot, and introduce a reasoning approach based on description logic. We define sequential rules for a sequence of shots in a video and describe how to classify it. For processing the large amount of increasing media data, we utilize Spark streaming, and a distributed in-memory big data processing framework, and describe how to classify media data in parallel. To evaluate the efficiency of the proposed approach, we conducted an experiment using a large amount of media ontology extracted from Youtube videos.

Samulnori Musicians' Experiences of Object Relations With Their Instruments (사물놀이 연주자의 악기 대상관계 경험)

  • Kim, Cheonsa;Kim, Kyoungsuk
    • Journal of Music and Human Behavior
    • /
    • 제18권2호
    • /
    • pp.87-107
    • /
    • 2021
  • The purpose of this research was to explore the phenomenon of object relations with musical instruments as experienced by professional Samulnori musicians. The researcher conducted in-depth individual interviews with five Samulnori players who also completed questionnaires with open-ended questions. The data were analyzed using Giorgi(2004)'s phenomenological methodology. The results offered 121 semantic units, seven subcategories, and three main categories. The three main categories were transitional object, object of expression and recognition of internal desires, and object for recognition of others and communication. These results suggest that the ensemble format of Samulnori promotes the development of the musician's object relationship and can externalize the player's internalized representational system and interaction method. This study is significant in that it reveals the endopsychic functional relationship between a musician and their instrument and provides the basis for the use of Samulnori instruments in music therapy.

Development of Deep Learning-based Automatic Classification of Architectural Objects in Point Clouds for BIM Application in Renovating Aging Buildings (딥러닝 기반 노후 건축물 리모델링 시 BIM 적용을 위한 포인트 클라우드의 건축 객체 자동 분류 기술 개발)

  • Kim, Tae-Hoon;Gu, Hyeong-Mo;Hong, Soon-Min;Choo, Seoung-Yeon
    • Journal of KIBIM
    • /
    • 제13권4호
    • /
    • pp.96-105
    • /
    • 2023
  • This study focuses on developing a building object recognition technology for efficient use in the remodeling of buildings constructed without drawings. In the era of the 4th industrial revolution, smart technologies are being developed. This research contributes to the architectural field by introducing a deep learning-based method for automatic object classification and recognition, utilizing point cloud data. We use a TD3D network with voxels, optimizing its performance through adjustments in voxel size and number of blocks. This technology enables the classification of building objects such as walls, floors, and roofs from 3D scanning data, labeling them in polygonal forms to minimize boundary ambiguities. However, challenges in object boundary classifications were observed. The model facilitates the automatic classification of non-building objects, thereby reducing manual effort in data matching processes. It also distinguishes between elements to be demolished or retained during remodeling. The study minimized data set loss space by labeling using the extremities of the x, y, and z coordinates. The research aims to enhance the efficiency of building object classification and improve the quality of architectural plans by reducing manpower and time during remodeling. The study aligns with its goal of developing an efficient classification technology. Future work can extend to creating classified objects using parametric tools with polygon-labeled datasets, offering meaningful numerical analysis for remodeling processes. Continued research in this direction is anticipated to significantly advance the efficiency of building remodeling techniques.

Design of Parallel Input Pattern and Synchronization Method for Multimodal Interaction (멀티모달 인터랙션을 위한 사용자 병렬 모달리티 입력방식 및 입력 동기화 방법 설계)

  • Im, Mi-Jeong;Park, Beom
    • Journal of the Ergonomics Society of Korea
    • /
    • 제25권2호
    • /
    • pp.135-146
    • /
    • 2006
  • Multimodal interfaces are recognition-based technologies that interpret and encode hand gestures, eye-gaze, movement pattern, speech, physical location and other natural human behaviors. Modality is the type of communication channel used for interaction. It also covers the way an idea is expressed or perceived, or the manner in which an action is performed. Multimodal Interfaces are the technologies that constitute multimodal interaction processes which occur consciously or unconsciously while communicating between human and computer. So input/output forms of multimodal interfaces assume different aspects from existing ones. Moreover, different people show different cognitive styles and individual preferences play a role in the selection of one input mode over another. Therefore to develop an effective design of multimodal user interfaces, input/output structure need to be formulated through the research of human cognition. This paper analyzes the characteristics of each human modality and suggests combination types of modalities, dual-coding for formulating multimodal interaction. Then it designs multimodal language and input synchronization method according to the granularity of input synchronization. To effectively guide the development of next-generation multimodal interfaces, substantially cognitive modeling will be needed to understand the temporal and semantic relations between different modalities, their joint functionality, and their overall potential for supporting computation in different forms. This paper is expected that it can show multimodal interface designers how to organize and integrate human input modalities while interacting with multimodal interfaces.

Developing a Test-Bed Toolkit for Scientific Document Analysis (기술 문헌 분석 테스트베드 툴킷 개발)

  • Choi, Sung-Pil;Song, Sa-Kwang;Jung, Han-Min
    • The Journal of the Korea Contents Association
    • /
    • 제12권8호
    • /
    • pp.13-19
    • /
    • 2012
  • This paper introduces a test-bed toolkit for evaluating and enhancing text analysis engines which extract technological knowledge from articles, patents, reports and so forth. The toolkit consists of two test-beds for technical entity recognition and relation extraction engines, which are capable of identifying technical entities and predicting semantic relation types between the entities. With using the introduced toolkits, users and developers can efficiently perform the execution monitoring and error analysis of the technical text analysis engines.

Optimization of Deep Learning Model Based on Genetic Algorithm for Facial Expression Recognition (얼굴 표정 인식을 위한 유전자 알고리즘 기반 심층학습 모델 최적화)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제15권1호
    • /
    • pp.85-92
    • /
    • 2020
  • Deep learning shows outstanding performance in image and video analysis, such as object classification, object detection and semantic segmentation. In this paper, it is analyzed that the performances of deep learning models can be affected by characteristics of train dataset. It is proposed as a method for selecting activation function and optimization algorithm of deep learning to classify facial expression. Classification performances are compared and analyzed by applying various algorithms of each component of deep learning model for CK+, MMI, and KDEF datasets. As results of simulation, it is shown that genetic algorithm can be an effective solution for optimizing components of deep learning model.