• Title/Summary/Keyword: Semantic feature matrix

검색결과 18건 처리시간 0.018초

의미 특징 행렬과 의미 가변행렬을 이용한 질의 기반의 문서 요약 (Query-Based Summarization using Semantic Feature Matrix and Semantic Variable Matrix)

  • 박선
    • 한국항행학회논문지
    • /
    • 제12권4호
    • /
    • pp.372-377
    • /
    • 2008
  • 본 논문은 의미특징행렬(semantic feature matrix)과 의미변수행령(semantic variable matrix)을 이용하는 질의 기반의 새로운 문서를 요약방법을 제안한다. 제안된 방법은 비지도 학습 방법으로 질의와 문장 간에 사전학습이 필요 없고, 의미 특징(semantic feature)과 의미변수(semantic variable)를 이용하여 질의에 적합한 하위 주제를 잘 반영하여서 정확한 문서를 요약 할 수 있다. 이것은 비음수 행렬 분해가 주제들로 구성된 문서의 내부구조를 나타내는 의미특징을 자연스럽게 추출할 수 있기 때문이다. 실험결과 제안방법이 다른 방법에 비하여 좋은 성능을 보인다.

  • PDF

하둡과 의미특징을 이용한 문서요약 (Document Summarization using Semantic Feature and Hadoop)

  • 김철원
    • 한국정보통신학회논문지
    • /
    • 제18권9호
    • /
    • pp.2155-2160
    • /
    • 2014
  • 본 논문은 하둡 기반의 분산병렬처리에 의한 문서의 의미특징을 추출하고, 추출된 의미특징을 이용하여 문서를 요약하는 새로운 방법을 제안한다. 제안된 방법은 문서요약에 비음수 분해된 문서의 의미특징을 이용함으로써 문서의 내부 구조를 잘 표현 할 수 있다. 또한 하둡을 이용하여 빅데이터의 문서를 요약할 수 있다. 실험결과 제안방법이 단일 컴퓨터 환경에서 처리할 수 없는 대용량의 문서를 요약할 수 있음을 보인다.

비음수 행렬 분해와 K-means를 이용한 주제기반의 다중문서요약 (Topic-based Multi-document Summarization Using Non-negative Matrix Factorization and K-means)

  • 박선;이주홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권4호
    • /
    • pp.255-264
    • /
    • 2008
  • 본 논문은 K-means과 비음수 행렬 분해(NMF)를 이용하여 주제기반의 다중문서를 요약하는 새로운 방법을 제안하였다. 제안방법은 비음수 행렬 분해를 이용하여 가중치가 부여된 용어-문장 행렬을 희소(Sparse)한 비음수 의미특징 행렬과 비음수 변수 행렬로 분해함으로써 직관적으로 이해할 수 있는 형태의 의미적 특징을 추출할 수 있고, 주제와 의미특징간의 유사도에 가중치를 부여하여 유사도는 높으나 실제 의미 없는 문장이 추출되는 것을 막는다. 또한 K-means 군집을 이용하여 문장에 포함된 노이즈를 제거함으로써 문서의 의미가 요약에 편향되게 반영하는 것을 피할 수 있고, 추출된 문장에 부여된 순위순서대로 정렬하여 보여 줌으로써 응집성을 높인다. 실험 결과 제안방법이 다른 방법에 비하여 좋은 성능을 보인다.

문장군집의 응집도와 의미특징을 이용한 포괄적 문서요약 (Generic Document Summarization using Coherence of Sentence Cluster and Semantic Feature)

  • 박선;이연우;심천식;이성로
    • 한국정보통신학회논문지
    • /
    • 제16권12호
    • /
    • pp.2607-2613
    • /
    • 2012
  • 지식 기반의 포괄적 문서요약은 문장집합의 구성이 요약 결과에 영향을 받는다. 이러한 문제를 해결하기 위해서 본 논문은 의미특징에 의한 군집과 문장군집의 응집도를 이용하여 포괄적 문서요약을 하는 새로운 방법을 제안한다. 제안 방법은 비음수행렬분해에서 유도되는 의미특징을 이용하여 문장을 군집하고, 문서의 내부구조를 잘 표현하는 문장군집들로 문서의 주제 그룹을 분류할 수 있다. 또한 문장군집의 응집도와 재군집에 의한 군집의 정재를 이용하여 중요한 문장을 추출함으로써 요약의 질을 향상시킬 수 있다. 실험결과 제안방법은 다른 포괄적 문서요약 방법에 비하여 좋은 성능을 보인다.

비음수행렬분해와 위키피디아를 이용한 사용자기반의 문서요약 (User-based Document Summarization using Non-negative Matrix Factorization and Wikipedia)

  • 박선;정민아;이성로
    • 대한전자공학회논문지SP
    • /
    • 제49권2호
    • /
    • pp.53-60
    • /
    • 2012
  • 본 논문은 위키피디아의 외부지식을 이용하여 사용자의 질의를 확장하고, 확장된 질의와 문서집합의 내부구조를 표현하는 의미특징을 이용하여 문서를 요약하는 새로운 방법을 제안한다. 제안된 방법은 사용자의 초기 질의에 위키피디아 기반의 연관 피드백을 적용하여 사용자가 요구하는 요약문장을 추출할 수 있도록 질의를 확장하며, 비음수 분해된 문서의 의미특징을 이용함으로써 문서의 내부 구조를 잘 표현 할 수 있다. 확장된 질의와 의미특징을 이용하여 의미 있는 문장을 추출함으로써 사용자의 요구사항과 제안방법의 요약결과 사이의 의미적 차이를 감소시킨다. 실험결과 제안방법이 기존방법에 비해서 문서요약에 대해 더 좋은 성능을 보인다.

의사연관피드백과 용어 가중치에 의한 문서요약 (Document Summarization using Pseudo Relevance Feedback and Term Weighting)

  • 김철원;박선
    • 한국정보통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.533-540
    • /
    • 2012
  • 본 논문은 의사연관피드백과 의미특징기반의 용어 가중치에 의한 문서요약 방법을 제안한다. 제안된 방법은 의사연관피드백을 이용하여 사용자의 간섭을 최소화 시키며, 의미특징으로부터 유도된 용어의 가중치는 문장집합의 내부 특징을 잘 나타나기 때문에 문서요약의 질을 향상할 수 있다. 또한 가중치가 부여된 의미특징과 확장된 질의를 이용하여서 사용자의 요구사항과 제안방법의 요약결과 사이의 의미적 차이를 감소시킨다. 실험결과 제안방법이 용어의 가중치를 부여하지 않은 방법에 비해서 좋은 성능을 보인다.

비음수 행렬 분해와 군집의 응집도를 이용한 문서군집 (Document Clustering Method using Coherence of Cluster and Non-negative Matrix Factorization)

  • 김철원;박선
    • 한국정보통신학회논문지
    • /
    • 제13권12호
    • /
    • pp.2603-2608
    • /
    • 2009
  • 문서군집은 정보검색의 많은 응용분야에 사용되는 중요한 문서 분석 방법이다. 본 논문은 비음수 행렬 분해 (NMF, non-negative matrix factorization)를 군집방법과 군집의 응집도(coherence of cluster)를 이용한 군집 내 문서들의 정제를 이용한 새로운 문서군집방법을 제안한다. 제안된 방법은 문서집합의 내부구조를 나타내는 의미특징행렬과 의미변수행렬 이용하여 문서군집의 성능을 높일 수 있고, 문장들 간의 유사도에 기반 한 군집의 응집도를 이용하여 군집내의 문서들을 정제하여서 재 할당함으로써 군집의 효율을 향상시킬 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

비음수 행렬 인수분해를 이용한 질의 기반의 문서 요약 (Query-Based Summarization using Non-negative Matrix Factorization)

  • 박선;이주홍;안찬민;박태수;김덕환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.394-396
    • /
    • 2006
  • 기존 질의기반의 문서요약은 질의와 문서간의 사전 학습으로 요약의 질을 높이거나, 문서의 고유 구조(inherent structure)를 반영하여 요약의 정확도를 높이기 위하여 문서를 그래프로 변환한다. 본 논문은 비음수 행렬 인수분해 (NMF, Non-negative Matrix Factorization)를 이용하여 질의 기반의 문서를 요약하는 새로운 방법을 제안하였다. 제안된 방법은 질의와 문서간에 사전학습이 필요 없다. 또한 문서를 그래프로 변형시키는 복잡한 처리 없이 NMF에 의해 얻어진 의미 특징(semantic feature)과 의미 변수(semantic variable)로 문서의 고유 구조를 반영하여 요약의 정확도를 높일 수 있다. 마지막으로 단순한 방법으로 문장을 쉽게 요약 할 수 있다.

  • PDF

비음수 행렬 인수분해와 NMF 군집방법을 이용한 다중문서요약 (Multi-document Summarization using Non-negative Matrix Factorization and NMF Clustering Method)

  • 박선;이주홍;김철원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.427-430
    • /
    • 2008
  • 본 논문은 비음수 행렬 인수분해(NMF, non-negative matrix factorization)와 NMF 군집방법을 이용하여 다중문서를 요약하는 새로운 방법을 제안하였다. 본 논문에서 NMF에 의해 계산된 의미 특징(semantic feature)은 문서의 고유 구조(inherent structure)를 반영하여 문장을 추출함으로써 요약의 질을 높일 수 있고, 의미 변수(semantic variable)를 이용한 문장의 군집은 문장 간의 유사성과 다양성 고려하여서 쉽게 과잉정보를 제거하여 문장을 요약할 수 있는 장점을 갖는다.

의미특징과 워드넷 기반의 의사 연관 피드백을 사용한 질의기반 문서요약 (Query-based Document Summarization using Pseudo Relevance Feedback based on Semantic Features and WordNet)

  • 김철원;박선
    • 한국정보통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.1517-1524
    • /
    • 2011
  • 본 논문은 의미특징과 워드넷 기반의 의사연관피드백을 이용하여 사용자의 질의에 관련 있는 의미 있는 문장을 추출하여 문서요약을 하는 새로운 방법을 제안한다. 제안된 방법은 비음수 행렬 분해로부터 유도된 의미특정이 문서의 잠재의미를 잘 나타나기 때문에 문서요약의 질을 향상할 수 있다. 또한 의미특정과 워드넷기반의 의사연관피드백을 이용하여서 사용자의 요구사항과 제안방법의 요약결과 사이의 의미적 차이를 감소시킨다. 실험결과 제안방법이 유사도, 비음수행렬분해를 이용한 방법들에 비하여 좋은 성능을 보인다.