• Title/Summary/Keyword: Semantic Role

Search Result 250, Processing Time 0.024 seconds

Korean Semantic Role Labeling Using Case Frame Dictionary and Subcategorization (격틀 사전과 하위 범주 정보를 이용한 한국어 의미역 결정)

  • Kim, Wan-Su;Ock, Cheol-Young
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1376-1384
    • /
    • 2016
  • Computers require analytic and processing capability for all possibilities of human expression in order to process sentences like human beings. Linguistic information processing thus forms the initial basis. When analyzing a sentence syntactically, it is necessary to divide the sentence into components, find obligatory arguments focusing on predicates, identify the sentence core, and understand semantic relations between the arguments and predicates. In this study, the method applied a case frame dictionary based on The Korean Standard Dictionary of The National Institute of the Korean Language; in addition, we used a CRF Model that constructed subcategorization of predicates as featured in Korean Lexical Semantic Network (UWordMap) for semantic role labeling. Automatically tagged semantic roles based on the CRF model, which established the information of words, predicates, the case-frame dictionary and hypernyms of words as features, were used. This method demonstrated higher performance in comparison with the existing method, with accuracy rate of 83.13% as compared to 81.2%, respectively.

A Semantic Aspect-Based Vector Space Model to Identify the Event Evolution Relationship within Topics

  • Xi, Yaoyi;Li, Bicheng;Liu, Yang
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.73-82
    • /
    • 2015
  • Understanding how the topic evolves is an important and challenging task. A topic usually consists of multiple related events, and the accurate identification of event evolution relationship plays an important role in topic evolution analysis. Existing research has used the traditional vector space model to represent the event, which cannot be used to accurately compute the semantic similarity between events. This has led to poor performance in identifying event evolution relationship. This paper suggests constructing a semantic aspect-based vector space model to represent the event: First, use hierarchical Dirichlet process to mine the semantic aspects. Then, construct a semantic aspect-based vector space model according to these aspects. Finally, represent each event as a point and measure the semantic relatedness between events in the space. According to our evaluation experiments, the performance of our proposed technique is promising and significantly outperforms the baseline methods.

Korean Semantic Role Labeling using Case Frame and Subcategory of Predicate (한국어 격틀 사전과 용언의 하위 범주 정보를 사용한 한국어 의미역 결정)

  • Kim, Wansu;Ock, CheolYoung
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.198-201
    • /
    • 2015
  • 의미역 결정은 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 문제이다. 본 논문에서는 UPropBank 격틀 사전과 UWordMap의 용언의 하위 범주 정보를 이용하여 의미역을 부착하였다. 실험 결과 80.125%의 정확률로 의미역을 부착하는 성능을 보였다.

  • PDF

Event Semantic Photo Retrieval Management System based on MPEG-7 (MPEG-7 기반의 이벤트 의미 포토 검색 관리 시스템)

  • Ahn, Byeong-Tae;Chung, Bhum-Suk;Lee, Chong-Ha
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Semantic photo retrieval has been an important role in reducing the semantic gap between the simple visual features and the abundant semantics delivered by a photo. Effective photo retrieval using semantics is one of the major challenges in photo retrieval. And we propose a new event semantic photo retrieval method by using photo annotation user interface. In this paper, A photo album management system that facilitates photo management and semantic retrieval, which fully relies on the MPEG-7 standard as an information base and a native XML database, has been designed and implemented.

Morphological Passivization and the Change of Lexical-Semantic Structures in Korean

  • Kim, Yoon-shin
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.02a
    • /
    • pp.195-204
    • /
    • 2002
  • The purpose of this paper is to analyze the lexical-semantic structure of morphologically derived passive verbs in Korean based on Pustejovsky (1995)'s Generative Lexicon Theory (GL) and to explain the change of the root verb's lexical-semantic structure by means of passivization. Passivization in this paper is defined as the unaccusaztivization. In Argument Structure of derived passive verbs, the agent argument is deleted and the theme argument is realized as a syntactic subject. As for Event Structure, derived passives express left-headed event (achievement), whereas their roots denote right-headed event (accomplishment). In Qualia Structure, passive verbs and root ones have the same Fomal Role, but in Agentive Role of passive verbs, an act weakens to a process. Both Formal and Agentive Roles have the same theme argument.

  • PDF

Extending Korean PropBank for Korean Semantic Role Labeling and Applying Domain Adaptation Technique (한국어 의미역 결정을 위한 Korean PropBank 확장 및 도메인 적응 기술 적용)

  • Bae, Jangseong;Lee, Changki
    • Korean Journal of Cognitive Science
    • /
    • v.26 no.4
    • /
    • pp.377-392
    • /
    • 2015
  • Korean semantic role labeling (SRL) is usually performed by a machine learning and requires a lot of corpus. However, the Korean PropBank used in Korean SRL system is less than PropBank. It leads to a low performance. Therefore, we expand the annotated corpus and verb frames for Korean SRL system to expand the Korean PropBank corpus. Most of the SRL system have a domain-dependent performance so, the performance may decrease if domain was changed. In this paper, we use the domain adaptation technique to reduce decreasing performance with the existing corpus and the small size of new domain corpus. We apply the domain adaptation technique to Structural SVM and Deep Neural Network. The experimental result show the effectiveness of the domain adaptation technique.

Semantic Role Labeling using Biaffine Average Attention Model (Biaffine Average Attention 모델을 이용한 의미역 결정)

  • Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.662-667
    • /
    • 2022
  • Semantic role labeling task(SRL) is to extract predicate and arguments such as agent, patient, place, time. In the previously SRL task studies, a pipeline method extracting linguistic features of sentence has been proposed, but in this method, errors of each extraction work in the pipeline affect semantic role labeling performance. Therefore, methods using End-to-End neural network model have recently been proposed. In this paper, we propose a neural network model using the Biaffine Average Attention model for SRL task. The proposed model consists of a structure that can focus on the entire sentence information regardless of the distance between the predicate in the sentence and the arguments, instead of LSTM model that uses the surrounding information for prediction of a specific token proposed in the previous studies. For evaluation, we used F1 scores to compare two models based BERT model that proposed in existing studies using F1 scores, and found that 76.21% performance was higher than comparison models.

Korean Semantic Role Labeling Based on Suffix Structure Analysis and Machine Learning (접사 구조 분석과 기계 학습에 기반한 한국어 의미 역 결정)

  • Seok, Miran;Kim, Yu-Seop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.555-562
    • /
    • 2016
  • Semantic Role Labeling (SRL) is to determine the semantic relation of a predicate and its argu-ments in a sentence. But Korean semantic role labeling has faced on difficulty due to its different language structure compared to English, which makes it very hard to use appropriate approaches developed so far. That means that methods proposed so far could not show a satisfied perfor-mance, compared to English and Chinese. To complement these problems, we focus on suffix information analysis, such as josa (case suffix) and eomi (verbal ending) analysis. Korean lan-guage is one of the agglutinative languages, such as Japanese, which have well defined suffix structure in their words. The agglutinative languages could have free word order due to its de-veloped suffix structure. Also arguments with a single morpheme are then labeled with statistics. In addition, machine learning algorithms such as Support Vector Machine (SVM) and Condi-tional Random Fields (CRF) are used to model SRL problem on arguments that are not labeled at the suffix analysis phase. The proposed method is intended to reduce the range of argument instances to which machine learning approaches should be applied, resulting in uncertain and inaccurate role labeling. In experiments, we use 15,224 arguments and we are able to obtain approximately 83.24% f1-score, increased about 4.85% points compared to the state-of-the-art Korean SRL research.

Two-Phase Shallow Semantic Parsing based on Partial Syntactic Parsing (부분 구문 분석 결과에 기반한 두 단계 부분 의미 분석 시스템)

  • Park, Kyung-Mi;Mun, Young-Song
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.85-92
    • /
    • 2010
  • A shallow semantic parsing system analyzes the relationship that a syntactic constituent of the sentence has with a predicate. It identifies semantic arguments representing agent, patient, instrument, etc. of the predicate. In this study, we propose a two-phase shallow semantic parsing model which consists of the identification phase and the classification phase. We first find the boundary of semantic arguments from partial syntactic parsing results, and then assign appropriate semantic roles to the identified semantic arguments. By taking the sequential two-phase approach, we can alleviate the unbalanced class distribution problem, and select the features appropriate for each task. Experiments show the relative contribution of each phase on the test data.

Similarity measure for P2P processing of semantic data (시맨틱웹 데이터의 P2P 처리를 위한 유사도 측정)

  • Kim, Byung Gon;Kim, Youn Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.4
    • /
    • pp.11-20
    • /
    • 2010
  • Ontology is important role in semantic web to construct and query semantic data. Because of dynamic characteristic of ontology, P2P environment is considered for ontology processing in web environment. For efficient processing of ontology in P2P environment, clustering of peers should be considered. When new peer is added to the network, cluster allocation problem of the new peer is important for system efficiency. For clustering of peers with similar chateristics, similarlity measure method of ontology in added peer with ontologies in other clusters is needed. In this paper, we propose similarity measure techniques of ontologies for clustering of peers. Similarity measure method in this paper considered ontology's strucural characteristics like schema, class, property. Results of experiments show that ontologies of similar topics, class, property can be allocated to the same cluster.