• Title/Summary/Keyword: Semantic Memory

Search Result 92, Processing Time 0.024 seconds

RDNN: Rumor Detection Neural Network for Veracity Analysis in Social Media Text

  • SuthanthiraDevi, P;Karthika, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3868-3888
    • /
    • 2022
  • A widely used social networking service like Twitter has the ability to disseminate information to large groups of people even during a pandemic. At the same time, it is a convenient medium to share irrelevant and unverified information online and poses a potential threat to society. In this research, conventional machine learning algorithms are analyzed to classify the data as either non-rumor data or rumor data. Machine learning techniques have limited tuning capability and make decisions based on their learning. To tackle this problem the authors propose a deep learning-based Rumor Detection Neural Network model to predict the rumor tweet in real-world events. This model comprises three layers, AttCNN layer is used to extract local and position invariant features from the data, AttBi-LSTM layer to extract important semantic or contextual information and HPOOL to combine the down sampling patches of the input feature maps from the average and maximum pooling layers. A dataset from Kaggle and ground dataset #gaja are used to train the proposed Rumor Detection Neural Network to determine the veracity of the rumor. The experimental results of the RDNN Classifier demonstrate an accuracy of 93.24% and 95.41% in identifying rumor tweets in real-time events.

A Folksonomy Ranking Framework: A Semantic Graph-based Approach (폭소노미 사이트를 위한 랭킹 프레임워크 설계: 시맨틱 그래프기반 접근)

  • Park, Hyun-Jung;Rho, Sang-Kyu
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.89-116
    • /
    • 2011
  • In collaborative tagging systems such as Delicious.com and Flickr.com, users assign keywords or tags to their uploaded resources, such as bookmarks and pictures, for their future use or sharing purposes. The collection of resources and tags generated by a user is called a personomy, and the collection of all personomies constitutes the folksonomy. The most significant need of the folksonomy users Is to efficiently find useful resources or experts on specific topics. An excellent ranking algorithm would assign higher ranking to more useful resources or experts. What resources are considered useful In a folksonomic system? Does a standard superior to frequency or freshness exist? The resource recommended by more users with mere expertise should be worthy of attention. This ranking paradigm can be implemented through a graph-based ranking algorithm. Two well-known representatives of such a paradigm are Page Rank by Google and HITS(Hypertext Induced Topic Selection) by Kleinberg. Both Page Rank and HITS assign a higher evaluation score to pages linked to more higher-scored pages. HITS differs from PageRank in that it utilizes two kinds of scores: authority and hub scores. The ranking objects of these pages are limited to Web pages, whereas the ranking objects of a folksonomic system are somewhat heterogeneous(i.e., users, resources, and tags). Therefore, uniform application of the voting notion of PageRank and HITS based on the links to a folksonomy would be unreasonable, In a folksonomic system, each link corresponding to a property can have an opposite direction, depending on whether the property is an active or a passive voice. The current research stems from the Idea that a graph-based ranking algorithm could be applied to the folksonomic system using the concept of mutual Interactions between entitles, rather than the voting notion of PageRank or HITS. The concept of mutual interactions, proposed for ranking the Semantic Web resources, enables the calculation of importance scores of various resources unaffected by link directions. The weights of a property representing the mutual interaction between classes are assigned depending on the relative significance of the property to the resource importance of each class. This class-oriented approach is based on the fact that, in the Semantic Web, there are many heterogeneous classes; thus, applying a different appraisal standard for each class is more reasonable. This is similar to the evaluation method of humans, where different items are assigned specific weights, which are then summed up to determine the weighted average. We can check for missing properties more easily with this approach than with other predicate-oriented approaches. A user of a tagging system usually assigns more than one tags to the same resource, and there can be more than one tags with the same subjectivity and objectivity. In the case that many users assign similar tags to the same resource, grading the users differently depending on the assignment order becomes necessary. This idea comes from the studies in psychology wherein expertise involves the ability to select the most relevant information for achieving a goal. An expert should be someone who not only has a large collection of documents annotated with a particular tag, but also tends to add documents of high quality to his/her collections. Such documents are identified by the number, as well as the expertise, of users who have the same documents in their collections. In other words, there is a relationship of mutual reinforcement between the expertise of a user and the quality of a document. In addition, there is a need to rank entities related more closely to a certain entity. Considering the property of social media that ensures the popularity of a topic is temporary, recent data should have more weight than old data. We propose a comprehensive folksonomy ranking framework in which all these considerations are dealt with and that can be easily customized to each folksonomy site for ranking purposes. To examine the validity of our ranking algorithm and show the mechanism of adjusting property, time, and expertise weights, we first use a dataset designed for analyzing the effect of each ranking factor independently. We then show the ranking results of a real folksonomy site, with the ranking factors combined. Because the ground truth of a given dataset is not known when it comes to ranking, we inject simulated data whose ranking results can be predicted into the real dataset and compare the ranking results of our algorithm with that of a previous HITS-based algorithm. Our semantic ranking algorithm based on the concept of mutual interaction seems to be preferable to the HITS-based algorithm as a flexible folksonomy ranking framework. Some concrete points of difference are as follows. First, with the time concept applied to the property weights, our algorithm shows superior performance in lowering the scores of older data and raising the scores of newer data. Second, applying the time concept to the expertise weights, as well as to the property weights, our algorithm controls the conflicting influence of expertise weights and enhances overall consistency of time-valued ranking. The expertise weights of the previous study can act as an obstacle to the time-valued ranking because the number of followers increases as time goes on. Third, many new properties and classes can be included in our framework. The previous HITS-based algorithm, based on the voting notion, loses ground in the situation where the domain consists of more than two classes, or where other important properties, such as "sent through twitter" or "registered as a friend," are added to the domain. Forth, there is a big difference in the calculation time and memory use between the two kinds of algorithms. While the matrix multiplication of two matrices, has to be executed twice for the previous HITS-based algorithm, this is unnecessary with our algorithm. In our ranking framework, various folksonomy ranking policies can be expressed with the ranking factors combined and our approach can work, even if the folksonomy site is not implemented with Semantic Web languages. Above all, the time weight proposed in this paper will be applicable to various domains, including social media, where time value is considered important.

An Efficient Reasoning Method for OWL Properties using Relational Databases (관계형 데이터베이스를 이용한 효율적인 OWL 속성 추론 기법)

  • Lin, Jiexi;Lee, Ji-Hyun;Chung, Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.37 no.2
    • /
    • pp.92-103
    • /
    • 2010
  • The Web Ontology Language (OWL) has become the W3C recommendation for publishing and sharing ontologies on the Semantic Web. To derive hidden information from OWL data, a number of OWL reasoners have been proposed. Since OWL reasoners are memory-based, they cannot handle large-sized OWL data. To overcome the scalability problem, RDBMS-based systems have been proposed. These systems store OWL data into a database and perform reasoning by incorporating the use of a database. However, they do not consider complete reasoning on all types of properties defined in OWL and the database schemas they use are ineffective for reasoning. In addition, they do not manage updates to the OWL data which can occur frequently in real applications. In this paper, we compare various database schemas used by RDBMS-based systems and propose an improved schema for efficient reasoning. Also, to support reasoning for all the types of properties defined in OWL, we propose a complete and efficient reasoning algorithm. Furthermore, we suggest efficient approaches to managing the updates that may occur on OWL data. Experimental results show that our schema has improved performance in OWL data storage and reasoning, and that our approaches to managing updates to OWL data are more efficient than the existing approaches.

Index for Efficient Ontology Retrieval and Inference (효율적인 온톨로지 검색과 추론을 위한 인덱스)

  • Song, Seungjae;Kim, Insung;Chun, Jonghoon
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.2
    • /
    • pp.153-173
    • /
    • 2013
  • The ontology has been gaining increasing interests by recent arise of the semantic web and related technologies. The focus is mostly on inference query processing that requires high-level techniques for storage and searching ontologies efficiently, and it has been actively studied in the area of semantic-based searching. W3C's recommendation is to use RDFS and OWL for representing ontologies. However memory-based editors, inference engines, and triple storages all store ontology as a simple set of triplets. Naturally the performance is limited, especially when a large-scale ontology needs to be processed. A variety of researches on proposing algorithms for efficient inference query processing has been conducted, and many of them are based on using proven relational database technology. However, none of them had been successful in obtaining the complete set of inference results which reflects the five characteristics of the ontology properties. In this paper, we propose a new index structure called hyper cube index to efficiently process inference queries. Our approach is based on an intuition that an index can speed up the query processing when extensive inferencing is required.

Pre-Filtering based Post-Load Shedding Method for Improving Spatial Queries Accuracy in GeoSensor Environment (GeoSensor 환경에서 공간 질의 정확도 향상을 위한 선-필터링을 이용한 후-부하제한 기법)

  • Kim, Ho;Baek, Sung-Ha;Lee, Dong-Wook;Kim, Gyoung-Bae;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.18-27
    • /
    • 2010
  • In u-GIS environment, GeoSensor environment requires that dynamic data captured from various sensors and static information in terms of features in 2D or 3D are fused together. GeoSensors, the core of this environment, are distributed over a wide area sporadically, and are collected in any size constantly. As a result, storage space could be exceeded because of restricted memory in DSMS. To solve this kind of problems, a lot of related studies are being researched actively. There are typically 3 different methods - Random Load Shedding, Semantic Load Shedding, and Sampling. Random Load Shedding chooses and deletes data in random. Semantic Load Shedding prioritizes data, then deletes it first which has lower priority. Sampling uses statistical operation, computes sampling rate, and sheds load. However, they are not high accuracy because traditional ones do not consider spatial characteristics. In this paper 'Pre-Filtering based Post Load Shedding' are suggested to improve the accuracy of spatial query and to restrict load shedding in DSMS. This method, at first, limits unnecessarily increased loads in stream queue with 'Pre-Filtering'. And then, it processes 'Post-Load Shedding', considering data and spatial status to guarantee the accuracy of result. The suggested method effectively reduces the number of the performance of load shedding, and improves the accuracy of spatial query.

The Phenomenological Study on Self-actualization of Middle-aged Single Mothers - Application of Guided Imagery and Music (GIM) - (한 부모 중년 여성가장의 자기실현과정에 관한 현상학적 연구 -심상유도 음악치료(GIM) 적용-)

  • Lim, Jae-Young;Shin, Dong-yeol;Lee, Ju-Young
    • Industry Promotion Research
    • /
    • v.6 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • The number of single-parent families in South Korea increased since 2000, related to a sharp rise in the divorce rate of 50s and an increase in male mortality rates among those aged 40s-50s. Middle-aged single mothers experience a critical period realizing self-actualization needs, while being in the middle adulthood from the lifespan developmental perspective. In this respect, it is significant to study self-actualization of middle-aged single mothers through guided imagery and music (GIM) in order to provide them with psychological support. This study was conducted from September 2018 to June 2020, and the GIM sessions were conducted at least 10 times. Four participants were selected among the middle-aged single mothers. The imagery experiences of participants in the GIM sessions were classified into four sub-elements: physicalness, emotion, memory, and sense. Within those sub-elements, eight semantic units were categorized into 46 elements. Finally, 152 semantic units were derived. Moreover, the self-actualization which participants experienced through GIM presented three archetypal images: shadow, persona, and the self. In the GIM sessions, experiences of putting their negative emotions associated with family into words and changing passive self-imagery into active one enabled participants to bring the shadow into their consciousness, there by recognizing their positive and bright internal self. Furthermore, participants could map that their current status as people marginalized by siblings and parents, enraged and holding double standards for others, was suppressed by their 'good daughter' and 'religious' personas. This realization lead them to realize and restore their persona. The use of GIM in the study allowed participants to elicit re-experiences of the negative events, while experiencing various imagery and music. This process helped participants achieve self-actualization.

Neural correlations of familiar and Unfamiliar face recognition by using Event Related fMRI

  • Kim, Jeong-Seok;Jeun, Sin-Soo;Kim, Bum-Soo;Choe, Bo-Young;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.78-78
    • /
    • 2003
  • Purpose: This event related fMRI study was to further our understanding about how different brain regions could contribute to effective access of specific information stored in long term memory. This experiment has allowed us to determine the brain regions involved in recognition of familiar faces among non familiar faces. Materials and Methods: Twelve right handed normal, healthy volunteer adults participated in face recognition experiment. The paradigm consists of two 40 familiar faces, 40 unfamiliar faces and control base with scrambled faces in a randomized order, with null events. Volunteers were instructed to press on one of two possible buttons of a response box to indicate whether a face was familiar or not. Incorrect answers were ignored. A 1.5T MRI system(GMENS) was employed to evaluate brain activity by using blood oxygen level dependent (BOLD) contrast. Gradient Echo EPI sequence with TR/TE= 2250/40 msec was used for 17 contiguous axial slices of 7mm thickness, covering the whole brain volume (240mm Field of view, 64 ${\times}$ 64 in plane resolution). The acquired data were applied to SPM99 for the processing such as realignment, normalization, smoothing, statistical ANOVA and statistical preference. Results/Disscusion: The comparison of familiar faces vs unfamiliar faces yielded significant activations in the medial temporal regions, the occipito temporal regions and in frontal regions. These results suggest that when volunteers are asked to recognize familiar faces among unfamiliar faces they tend to activate several regions frequently involved in face perception. The medial temporal regions are also activated for familiar and unfamiliar faces. This interesting result suggests a contribution of this structure in the attempt to match perceived faces with pre existing semantic representations stored in long term memory.

  • PDF

Neuropsychological Approaches to Mathematical Learning Disabilities and Research on the Development of Diagnostic Test (신경심리학적 이론에 근거한 수학학습장애의 유형분류 및 심층진단검사의 개발을 위한 기초연구)

  • Kim, Yon-Mi
    • Education of Primary School Mathematics
    • /
    • v.14 no.3
    • /
    • pp.237-259
    • /
    • 2011
  • Mathematics learning disabilities is a specific learning disorder affecting the normal acquisition of arithmetic and spatial skills. Reported prevalence rates range from 5 to 10 percent and show high rates of comorbid disabilities, such as dyslexia and ADHD. In this study, the characteristics and the causes of this disorder has been examined. The core cause of mathematics learning disabilities is not clear yet: it can come from general cognitive problems, or disorder of innate intuitive number module could be the cause. Recently, researchers try to subdivide mathematics learning disabilities as (1) semantic/memory type, (2) procedural/skill type, (3) visuospatial type, and (4) reasoning type. Each subtype is related to specific brain areas subserving mathematical cognition. Based on these findings, the author has performed a basic research to develop grade specific diagnostic tests: number processing test and math word problems for lower grades and comprehensive math knowledge tests for the upper grades. The results should help teachers to find out prior knowledge, specific weaknesses of students, and plan personalized intervention program. The author suggest diagnostic tests are organized into 6 components. They are number sense, conceptual knowledge, arithmetic facts retrieval, procedural skills, mathematical reasoning/word problem solving, and visuospatial perception tests. This grouping will also help the examiner to figure out the processing time for each component.

A Study on a Conceptualization-oriented SDSS Model for Landscape Design (조경설계를 위한 공간개념화 지향의 공간의사결정지원시스템 모델에 대한 연구)

  • Kim, Eun Hyung
    • Spatial Information Research
    • /
    • v.22 no.6
    • /
    • pp.55-65
    • /
    • 2014
  • By combining the role of current GIS technology and design behaviors from the cognitive perspective, spatial conceptualization can be extended efficiently and creatively for ill-structured problems. This study elaborates the model of a conceptualization-oriented SDSS(Spatial Decision Support System) for a landscape design problem. Current information-oriented GIS technology plays a minor role in planning and design. The three attributes in planning and design problems describe how the deficiencies of current GIS technology can be seen as a failure of the technology. These are summarized: (1) Information Explosion/Information Ignorance (2) Dilemma of Rigor and Relevance (3) Ill-structured Nature of planning and Design. In order to implement the conceptualization idea in the current GIS environment, it will be necessary to shift from traditional, information-oriented GISs to conceptualization-oriented SDSSs. The conceptualization-oriented SDSS model reflects the key elements of six important theories and techniques. The six useful theories and techniques are as follows; (1) Human Information Processing (2) Tool/Theory Interaction (3) The Sciences of the Artificial and Epistemology of Practice (4) Decision Support Systems (DSSs) (5) Human-Computer Interaction (HCI) (6) Creative Thinking. The future conceptualization-oriented SDSS can provide capabilities for planners and designers to figure out some "hidden organizations" in spatial planning and design, and develop new ideas through its conceptualization capability. The facilitation of conceptualization has been demonstrated by presenting three key ideas for the framework of the SDSS model: (1) bubble-oriented design support system (2) prototypes as an extension of semantic memory, and (3) scripts as an extension of episodic memory in a cognitive pschology perspective. The three ideas can provide a direction for the future GIS technology in planning and design.

Index Ontology Repository for Video Contents (비디오 콘텐츠를 위한 색인 온톨로지 저장소)

  • Hwang, Woo-Yeon;Yang, Jung-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.10
    • /
    • pp.1499-1507
    • /
    • 2009
  • With the abundance of digital contents, the necessity of precise indexing technology is consistently required. To meet these requirements, the intelligent software entity needs to be the subject of information retrieval and the interoperability among intelligent entities including human must be supported. In this paper, we analyze the unifying framework for multi-modality indexing that Snoek and Worring proposed. Our work investigates the method of improving the authenticity of indexing information in contents-based automated indexing techniques. It supports the creation and control of abstracted high-level indexing information through ontological concepts of Semantic Web skills. Moreover, it attempts to present the fundamental model that allows interoperability between human and machine and between machine and machine. The memory-residence model of processing ontology is inappropriate in order to take-in an enormous amount of indexing information. The use of ontology repository and inference engine is required for consistent retrieval and reasoning of logically expressed knowledge. Our work presents an experiment for storing and retrieving the designed knowledge by using the Minerva ontology repository, which demonstrates satisfied techniques and efficient requirements. At last, the efficient indexing possibility with related research is also considered.

  • PDF