Journal of the Korean Society for information Management
/
v.29
no.4
/
pp.123-142
/
2012
To develop an intelligent search engine to help users retrieve information effectively, various methods, such as Semantic Web, have been used, An effective retrieval method of such methods uses ontology technology. In this paper, we built National R&D ontology after analyzing National R&D Information in NTIS and then implemented National R&D Knowledge Map to represent and retrieve information of the relationship between object and subject (project, human information, organization, research result) in R&D Ontology. In the National R&D Knowledge Map, center-node is the object selected by users, node is subject, subject's sub-node is user's favorite query in National R&D ontology after analyzing the relationship between object and subject. When a user selects sub-node, the system displays the results from inference engine after making query by SPARQL in National R&D ontology.
This paper proposes a relational security model-based RDF Web ontology access control model. The Semantic Web is recognized as a next generation Web and RDF is a Web ontology description language to realize the Semantic Web. Much effort has been on the RDF and most research has been focused on the editor, storage, and inference engine. However, little attention has been given to the security issue, which is one of the most important requirements for information systems. Even though several researches on the RDF ontology security have been proposed, they have overhead to load all relevant data to memory and neglect the situation that most ontology storages are being developed based on relational database. This paper proposes a novel RDF Web ontology security model based on relational database to resolve the issues. The proposed security model provides high practicality and usability, and also we can easily make it stable owing to the stability of the relational database security model.
IEMEK Journal of Embedded Systems and Applications
/
v.19
no.1
/
pp.47-55
/
2024
We spend a lot of time in indoor space, and the space has a huge impact on our lives. Interior design plays a significant role to make an indoor space attractive and functional. However, it should consider a lot of complex elements such as color, pattern, and material etc. With the increasing demand for interior design, there is a growing need for technologies that analyze these design elements accurately and efficiently. To address this need, this study suggests a deep learning-based design analysis system. The proposed system consists of a semantic segmentation model that classifies spatial components and an image classification model that classifies attributes such as color, pattern, and material from the segmented components. Semantic segmentation model was trained using a dataset of 30000 personal indoor interior images collected for research, and during inference, the model separate the input image pixel into 34 categories. And experiments were conducted with various backbones in order to obtain the optimal performance of the deep learning model for the collected interior dataset. Finally, the model achieved good performance of 89.05% and 0.5768 in terms of accuracy and mean intersection over union (mIoU). In classification part convolutional neural network (CNN) model which has recorded high performance in other image recognition tasks was used. To improve the performance of the classification model we suggests an approach that how to handle data that has data imbalance and vulnerable to light intensity. Using our methods, we achieve satisfactory results in classifying interior design component attributes. In this paper, we propose indoor space design analysis system that automatically analyzes and classifies the attributes of indoor images using a deep learning-based model. This analysis system, used as a core module in the A.I interior recommendation service, can help users pursuing self-interior design to complete their designs more easily and efficiently.
Journal of the Korea Society of Computer and Information
/
v.29
no.9
/
pp.39-48
/
2024
In this study, we propose a method to augment the provided reasoning paths to improve the answer performance and explanatory power of KGQA. In the proposed method, we utilize LLMs and GNNs to retrieve reasoning paths related to the question from the knowledge graph and evaluate reasoning paths. Then, we retrieve the external information related to the question and then converted into triples to answer the question and explain the reason. Our method evaluates the reasoning path by checking inference results and semantically by itself. In addition, we find related texts to the question based on their similarity and converting them into triples of knowledge graph. We evaluated the performance of the proposed method using the WebQuestion Semantic Parsing dataset, and found that it provides correct answers with higher accuracy and more questions with explanations than the reasoning paths by the previous research.
According to Harris'(1966) distributional hypothesis, understanding the meaning of a word is thought to be dependent on its context. Under this hypothesis about human language ability, this paper proposes a computational model for native speaker's language processing mechanism concerning word sense disambiguation, based on two sets of experiments. Among the three computational models discussed in this paper, namely, the logic model, the probabilistic model, and the probabilistic inference model, the experiment shows that the logic model is first applied fer semantic disambiguation of the key word. Nexr, if the logic model fails to apply, then the probabilistic model becomes most relevant. The three models were also compared with the test results in terms of Pearson correlation coefficient value. It turns out that the logic model best explains the human decision behaviour on the ambiguous words, and the probabilistic inference model tomes next. The experiment consists of two pans; one involves 30 sentences extracted from 1 million graphic-word corpus, and the result shows the agreement rate anong native speakers is at 98% in terms of word sense disambiguation. The other pm of the experiment, which was designed to exclude the logic model effect, is composed of 50 cleft sentences.
In the computing environment with heterogeneous resources, a job scheduling model is necessary for effective resource utilization and high-speed data processing. And, the job scheduling model has to cope with a dynamic change in the condition of resources. There have been lots of researches on resource estimation methods and heuristic algorithms about how to distribute and allocate jobs to heterogeneous resources. But, existing researches have a weakness for system compatibility and scalability because they do not support the standard language. Also, they are impossible to process jobs effectively and deal with a variety of computing situations in which the condition of resources is dynamically changed in real-time. In order to solve the problems of existing researches, this paper proposes a semantic computing-based dynamic job scheduling model that defines various knowledge-based rules for job scheduling methods adaptable to changes in resource condition and allocate a job to the best suited resource through inference. This paper also constructs a resource ontology to manage information about heterogeneous resources without difficulty as using the OWL, the standard ontology language established by W3C. Experimental results shows that the proposed scheduling model outperforms existing scheduling models, in terms of throughput, job loss, and turn around time.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.213-216
/
2005
W3C에서는 온톨로지의 표준 언어로 OWL(Web Ontology Language)을 발표하였고 이를 활용한 온톨로지가 다양한 곳에 적용되어 구축이 되고 있다. 하지만, DL(Description Logic)기반인 OWL언어가 표현할 수 있는 규칙의 한계로 인하여 이를 확장하기 위한 연구가 활발히 진행되고 있다. 이러한 연구를 통하여 W3C에서는 OWL과 RuleML(Rule Markup Language)을 통합하여 규칙(Rule)에 대한 표현력이 더욱 향상된 SWRL(Semantic Web Rule Language) 언어를 제안하였다. 현재 이러한 연구는 OWL, SWRL 온톨로지 언어를 활용하고 Racer, Jess와 같은 엔진을 통하여 추론을 하는 형태로 활성화 되어 가고 있다. 하지만 이러한 형태로 온톨로지를 구축하는데 있어서 Racer를 이용한 DL추론, Jess를 이용한 Rule-base추론이 병행되고 있다. 이에 따라 본 논문에서는 온톨로지를 추론하기 위한 엔진으로 Racer와 Jess의 병행이 아닌, Jess를 이용하여 DL기반언어인 OR온톨로지를 추론하는 것 뿐 만 아니라 SWRL언어의 규칙 또한 추론할 수 있도록 한다. 이러한 시스템을 구축하기 위해 OWL을 Jess언어를 이용하여 추론할 수 있도록 개발된 OWLJessKB라는 툴과 SWRL언어를 추론하기 위해 Jess언어로 변환하여 이를 추론하는 SWRL Factory, 그리고 이출 이용하여 통합 추론하기 위한 세가지 통합 추론 플랫폼을 제안한다.
RDF is widely used as the ontology language for representing metadata on the semantic web. Since ontology models the real-world, ontology changes overtime. Thus, it is very important to detect and analyze changes in knowledge base system. Earlier studies on detecting changes between RDF models focused on the structural differences. Some techniques which reduce the size of the delta by considering the RDFS entailment rules have been introduced. However, inferencing with RDF models increases data size and upload time. In this paper, we propose a new change detection using RDF reasoning that only computes a small part of the implied triples using backward chaining strategy. We show that our approach efficiently detects changes through experiments with real-life RDF datasets.
Park, Sang-Won;Choi, Eun-Jeong;Park, Min-Su;Kim, Jeong-Gyu;Seo, Eun-Seok;Park, Young-Tack
Journal of KIISE:Computing Practices and Letters
/
v.15
no.5
/
pp.390-394
/
2009
The semantic web-based social network is highly useful in a variety of areas. In this paper we make diverse analyses of the FOAF-based social network, and propose an expert recommendation system. This system presents useful method of ontology-based social network using SparQL, RDFS inference, and visualization tools. Then we apply it to real social network in order to make various analyses of centrality, small world, scale free, etc. Moreover, our system suggests method for analysis of an expert on specific field. We expect such method to be utilized in multifarious areas - marketing, group administration, knowledge management system, and so on.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.05a
/
pp.253-255
/
2015
In a variety of network environments, the provision of context-aware services, it is difficult to integrate and share because of the heterogeneity problem between distributed data. This paper proposes the integration model using the ontology as a method for solving the above. This uses an ontology to integrate the context-aware informations that are collected. The ontology is generated by the acquisition, semantic analysis and inference of the metadata of the context-aware information. This is the basis of the analysis and analysis of the additional system. Accordingly, this paper studies ways to create an ontology and apply them. The advantage of the proposed scheme can be used without modifying the existing tools, it is possible to easily perform the expansion and consolidation of the system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.