• Title/Summary/Keyword: Semantic Data Model

Search Result 394, Processing Time 0.029 seconds

Graph-based Segmentation for Scene Understanding of an Autonomous Vehicle in Urban Environments (무인 자동차의 주변 환경 인식을 위한 도시 환경에서의 그래프 기반 물체 분할 방법)

  • Seo, Bo Gil;Choe, Yungeun;Roh, Hyun Chul;Chung, Myung Jin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In recent years, the research of 3D mapping technique in urban environments obtained by mobile robots equipped with multiple sensors for recognizing the robot's surroundings is being studied actively. However, the map generated by simple integration of multiple sensors data only gives spatial information to robots. To get a semantic knowledge to help an autonomous mobile robot from the map, the robot has to convert low-level map representations to higher-level ones containing semantic knowledge of a scene. Given a 3D point cloud of an urban scene, this research proposes a method to recognize the objects effectively using 3D graph model for autonomous mobile robots. The proposed method is decomposed into three steps: sequential range data acquisition, normal vector estimation and incremental graph-based segmentation. This method guarantees the both real-time performance and accuracy of recognizing the objects in real urban environments. Also, it can provide plentiful data for classifying the objects. To evaluate a performance of proposed method, computation time and recognition rate of objects are analyzed. Experimental results show that the proposed method has efficiently in understanding the semantic knowledge of an urban environment.

Spatio-Temporal Semantic Sensor Web based on SSNO (SSNO 기반 시공간 시맨틱 센서 웹)

  • Shin, In-Su;Kim, Su-Jeong;Kim, Jeong-Joon;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.9-18
    • /
    • 2014
  • According to the recent development of the ubiquitous computing environment, the use of spatio-temporal data from sensors with GPS is increasing, and studies on the Semantic Sensor Web using spatio-temporal data for providing different kinds of services are being actively conducted. Especially, the W3C developed the SSNO(Semantic Sensor Network Ontology) which uses sensor-related standards such as the SWE(Sensor Web Enablement) of OGC and defines classes and properties for expressing sensor data. Since these studies are available for the query processing about non-spatio-temporal sensor data, it is hard to apply them to spatio-temporal sensor data processing which uses spatio-temporal data types and operators. Therefore, in this paper, we developed the SWE based on SSNO which supports the spatio-temporal sensor data types and operators expanding spatial data types and operators in "OpenGIS Simple Feature Specification for SQL" by OGC. The system receives SensorML(Sensor Model Language) and O&M (Observations and Measurements) Schema and converts the data into SSNO. It also performs the efficient query processing which supports spatio-temporal operators and reasoning rules. In addition, we have proved that this system can be utilized for the web service by applying it to a virtual scenario.

Weibo Disaster Rumor Recognition Method Based on Adversarial Training and Stacked Structure

  • Diao, Lei;Tang, Zhan;Guo, Xuchao;Bai, Zhao;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3211-3229
    • /
    • 2022
  • To solve the problems existing in the process of Weibo disaster rumor recognition, such as lack of corpus, poor text standardization, difficult to learn semantic information, and simple semantic features of disaster rumor text, this paper takes Sina Weibo as the data source, constructs a dataset for Weibo disaster rumor recognition, and proposes a deep learning model BERT_AT_Stacked LSTM for Weibo disaster rumor recognition. First, add adversarial disturbance to the embedding vector of each word to generate adversarial samples to enhance the features of rumor text, and carry out adversarial training to solve the problem that the text features of disaster rumors are relatively single. Second, the BERT part obtains the word-level semantic information of each Weibo text and generates a hidden vector containing sentence-level feature information. Finally, the hidden complex semantic information of poorly-regulated Weibo texts is learned using a Stacked Long Short-Term Memory (Stacked LSTM) structure. The experimental results show that, compared with other comparative models, the model in this paper has more advantages in recognizing disaster rumors on Weibo, with an F1_Socre of 97.48%, and has been tested on an open general domain dataset, with an F1_Score of 94.59%, indicating that the model has better generalization.

Development of MDA-based Subsurface Spatial Ontology Model for Semantic Sharing (시멘틱 공유를 위한 MDA기반 지하공간정보 온톨로지 모델 개발)

  • Lee, Sang-Hoon;Chang, Pyoung-Wuck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.121-129
    • /
    • 2009
  • Today, it is difficult to re-use and share spatial information, because of the explosive growth of heterogeneous information and specific characters of spatial information accumulated by diverse local agency. A spatial analysis of subsurface spatial informa-tion, one of the National Spatial Data Infrastructure, needs related spatial information such as, topographical map, geologic map, underground facility map, etc. However, current methods using standard format or spatial datawarehouse cannot consider a se-mantic hetergenity. In this paper, the layered ontology model which consists of generic concept, measuremnt scale, spatial model, and subsurface spatial information has developed. Also, the current ontology building method pertained to human experts is a expensive and time-consuming process. We have developed the MDA-based metamodel(UML Profile) of ontology that can be a easy under-standing and flexiblity of environment change. The semantic quality of devleoped ontology model has evaluated by reasoning engine, Pellet. We expect to improve a semantic sharing, and strengthen capacities for developing GIS experts system using knowledge representation ability of ontology.

  • PDF

A Semantic Diagnosis and Tracking System to Prevent the Spread of COVID-19 (COVID-19 확산 방지를 위한 시맨틱 진단 및 추적시스템)

  • Xiang, Sun Yu;Lee, Yong-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.611-616
    • /
    • 2020
  • In order to prevent the further spread of the COVID-19 virus in big cities, this paper proposes a semantic diagnosis and tracking system based on Linked Data through the cluster analysis of the infection situation in Seoul, South Korea. This paper is mainly composed of three sections, information of infected people in Seoul is collected for the cluster analysis, important infected patient attributes are extracted to establish a diagnostic model based on random forest, and a tracking system based on Linked Data is designed and implemented. Experimental results show that the accuracy of our diagnostic model is more than 80%. Moreover, our tracking system is more flexible and open than existing systems and supports semantic queries.

Comparative Study of Deep Learning Model for Semantic Segmentation of Water System in SAR Images of KOMPSAT-5 (아리랑 5호 위성 영상에서 수계의 의미론적 분할을 위한 딥러닝 모델의 비교 연구)

  • Kim, Min-Ji;Kim, Seung Kyu;Lee, DoHoon;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.206-214
    • /
    • 2022
  • The way to measure the extent of damage from floods and droughts is to identify changes in the extent of water systems. In order to effectively grasp this at a glance, satellite images are used. KOMPSAT-5 uses Synthetic Aperture Radar (SAR) to capture images regardless of weather conditions such as clouds and rain. In this paper, various deep learning models are applied to perform semantic segmentation of the water system in this SAR image and the performance is compared. The models used are U-net, V-Net, U2-Net, UNet 3+, PSPNet, Deeplab-V3, Deeplab-V3+ and PAN. In addition, performance comparison was performed when the data was augmented by applying elastic deformation to the existing SAR image dataset. As a result, without data augmentation, U-Net was the best with IoU of 97.25% and pixel accuracy of 98.53%. In case of data augmentation, Deeplab-V3 showed IoU of 95.15% and V-Net showed the best pixel accuracy of 96.86%.

A Study on Designing with RDF for manage of Web Service Metadata (웹 서비스 메타데이타 관리를 위한 RDF 설계에 관한 연구)

  • 최호찬;유동석;이명구;김차종
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.623-625
    • /
    • 2003
  • The Semantic Web stands out in the next generation web, recently. In the Semantic Web, any information resources is defined by semantics and semantic links is given among these. It is different from existing web service environment. RDF (Resource Description Framework) is the data model to describe metadata of web resource and is to support for semantic links. And it is much the same as WSDL (Web Serice Description Language). In theis paper, we propose the RDF design method to improve the search performance by integrating RDF data unit with WSDL. We confirm the performance and efficiency of search will be improved by using the proposed method.

  • PDF

Design of Relational Storage Schema and Query Processing for Semantic Web Documents (시맨틱 웹 문서를 위한 관계형 저장 스키마 설계 및 질의 처리 기법)

  • Lee, Soon-Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.35-45
    • /
    • 2009
  • According to the widespread use of ontology documents, a management system which store ontology data and process queries is needed for retrieving semantic information efficiently. In this paper I propose a storage schema that stores and retrieves semantic web documents based on RDF/RDFS ontology language developed by W3C in a relational databases. Specially, the proposed storage schema is designed to retrieve efficiently hierarchy information and to increase efficiency of query processing. Also, I describe a mechanism to transform RQL semantic queries to SQL relational queries and build up database using MS-ACCESS and implement in this paper. According to the result of implementation, we can blow that not only data query based on triple model but also query for schema and hierarchy information are transformed simply to SQL.

Ontology BIM-based Knowledge Service Framework Architecture Development (온톨로지 BIM 기반 지식 서비스 프레임웍 아키텍처 개발)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.52-60
    • /
    • 2022
  • Recently, the demand for connection between various heterogeneous dataset and BIM as a construction data model hub is increasing. In the past, in order to connect model between BIM and heterogeneous dataset, related dataset was stored in the RDBMS, and the service was provided by programming a method to link with the BIM object. This approach causes problems such as the need to modify the database schema and business logic, and the migration of existing data when requirements change. This problem adversely affects the scalability, reusability, and maintainability of model information. This study proposes an ontology BIM-based knowledge service framework considering the connectivity and scalability between BIM and heterogeneous dataset. Through the proposed framework, ontology BIM mapping, semantic information query method for linking between knowledge-expressing dataset and BIM are presented. In addition, to identify the effectiveness of the proposed method, the prototype is developed. Also, the effectiveness and considerations of the ontology BIM-based knowledge service framework are derived.

Compound Loss Function of semantic segmentation models for imbalanced construction data

  • Chern, Wei-Chih;Kim, Hongjo;Asari, Vijayan;Nguyen, Tam
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.808-813
    • /
    • 2022
  • This study presents the problems of data imbalance, varying difficulties across target objects, and small objects in construction object segmentation for far-field monitoring and utilize compound loss functions to address it. Construction site scenes of assembling scaffolds were analyzed to test the effectiveness of compound loss functions for five construction object classes---workers, hardhats, harnesses, straps, hooks. The challenging problem was mitigated by employing a focal and Jaccard loss terms in the original loss function of LinkNet segmentation model. The findings indicates the importance of the loss function design for model performance on construction site scenes for far-field monitoring.

  • PDF