• Title/Summary/Keyword: Semantic Data

검색결과 1,396건 처리시간 0.023초

의미기반 전자 카탈로그 이미지 검색을 위한 XML 데이타베이스 시스템 구현 (An Implementation of XML Database System for Semantic-Based E-Catalog Image Retrieval)

  • 홍성용;나연묵
    • 한국멀티미디어학회논문지
    • /
    • 제7권9호
    • /
    • pp.1219-1232
    • /
    • 2004
  • 최근 e-비즈니스나 인터넷 쇼핑몰 사이트에서 는 많은 양의 상품 이미지 정보와 컨텐츠를 취급하고 있으며 ,이로 인하여 이미지에 대한 효율적인 의미기반 검색의 필요성이 대두되고 있다. 본 논문에서는 XML과 퍼지기술을 이용하여 웹상의 상품 이미지를 의미적으로 검색할 수 있는 시스템에 대해 설명한다. 상품 카탈로그와 같은 다중 객체를 보유하고 있는 이미지에 대하여 의미 기반 검색을 수행할 수 있도록 상품 정보나 의미등의 메타데이타를 표현하는 다계층 메타데이타 구조를 사용한다. 이미지에 대한 의미기반 검색을 수행할 수 있도록 하기 위해 메타데이타를 저장하기 위한 XML 데이타베이스를 설계하고 퍼지 데이타를 적용할 수 있는 방법을 연구하였다. 본 논문에서 제시한 시스템은 이미지에 대한 메타데이타를 이용하여 퍼지 데이터를 자동 생성하고, 생성된 퍼지 데이타를 의미기반 이미지 검색에 사용한다. 따라서 의미기반 상품 이미지 검색에 대하여 사용자의 검색질의에 대한 정확성과 만족도를 증대 시킬 수 있다.

  • PDF

An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

  • Jin, Ran;Chen, Gang;Tung, Anthony K.H.;Shou, Lidan;Ooi, Beng Chin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2761-2781
    • /
    • 2018
  • With the continuous growth of data size and the use of compression technology, data reduction has great research value and practical significance. Aiming at the shortcomings of the existing semantic compression algorithm, this paper is based on the analysis of ItCompress algorithm, and designs a method of bidirectional order selection based on interval partitioning, which named An Optimized Iterative Semantic Compression Algorithm (Optimized ItCompress Algorithm). In order to further improve the speed of the algorithm, we propose a parallel optimization iterative semantic compression algorithm using GPU (POICAG) and an optimized iterative semantic compression algorithm using Spark (DOICAS). A lot of valid experiments are carried out on four kinds of datasets, which fully verified the efficiency of the proposed algorithm.

시멘틱 웹 환경에서의 개인화 검색 (Personalized Search Service in Semantic Web)

  • 김제민;박영택
    • 정보처리학회논문지B
    • /
    • 제13B권5호
    • /
    • pp.533-540
    • /
    • 2006
  • 웹에 분산된 모든 윈 페이지는 구조가 서로 다르다. 시멘틱 웹 환경은 이형적인 구조를 갖는 웹 페이지들의 메타데이터 바탕으로 시멘틱 검색이 가능하다. 그러나 일반적으로 사용자의 요구에 따른 시멘틱 김색은 상황에 따라 엄청난 수의 검색 결과를 내놓는다. 따라서 검색 결과에 대해 각 사용자에 맞는 검색 결과 순위를 적용할 필요가 있다. Culture Finder는 시멘틱 웹 검색 에이전트들이 개인화 된 문화 정보를 검색할 수 있도록 도움을 준다. Culture Finder는 웹에 존재하는 각 웹 페이지에 대한 메타 데이터를 작성하고, 시멘틱 검색을 이행하며 사용자 프로파일을 기반으로 삼아 검색 결과에 대한 순위 점수를 계산한다. Culture Finder에는 개인화 된 시멘틱 검색을 효율적으로 실행하기 위해 중요한 5가지 기법이 적용되었다. 사용자의 검색 행위로부터 사용자 프로파일을 생성하기 위한 기계 학습기법, 시멘틱 웹 검색 에이전트를 위한 효율적인 시멘틱 검색 기법, 사용자 질의의 효과적인 파악을 위한 질의 분석 기법, 각 사용자에게 적합한 검색 결과를 제공하기 위한 순위 적용 기술, 메타데이터를 생성하기 위한 상위 온톨로지 표현 방법, 본 논문에서는 Culture Finder의 구조를 통해서 시멘틱 개인화 검색에 대한 기법을 제안한다.

Semantic Trajectory Based Behavior Generation for Groups Identification

  • Cao, Yang;Cai, Zhi;Xue, Fei;Li, Tong;Ding, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5782-5799
    • /
    • 2018
  • With the development of GPS and the popularity of mobile devices with positioning capability, collecting massive amounts of trajectory data is feasible and easy. The daily trajectories of moving objects convey a concise overview of their behaviors. Different social roles have different trajectory patterns. Therefore, we can identify users or groups based on similar trajectory patterns by mining implicit life patterns. However, most existing daily trajectories mining studies mainly focus on the spatial and temporal analysis of raw trajectory data but missing the essential semantic information or behaviors. In this paper, we propose a novel trajectory semantics calculation method to identify groups that have similar behaviors. In our model, we first propose a fast and efficient approach for stay regions extraction from daily trajectories, then generate semantic trajectories by enriching the stay regions with semantic labels. To measure the similarity between semantic trajectories, we design a semantic similarity measure model based on spatial and temporal similarity factor. Furthermore, a pruning strategy is proposed to lighten tedious calculations and comparisons. We have conducted extensive experiments on real trajectory dataset of Geolife project, and the experimental results show our proposed method is both effective and efficient.

사물인터넷 환경에서 대용량 스트리밍 센서데이터의 실시간·병렬 시맨틱 변환 기법 (Real-time and Parallel Semantic Translation Technique for Large-Scale Streaming Sensor Data in an IoT Environment)

  • 권순현;박동환;방효찬;박영택
    • 정보과학회 논문지
    • /
    • 제42권1호
    • /
    • pp.54-67
    • /
    • 2015
  • 최근 사물인터넷 환경에서는 발생하는 센서데이터의 가치와 데이터의 상호운용성을 증진시키기 위해 시맨틱웹 기술과의 접목에 대한 연구가 활발히 진행되고 있다. 이를 위해서는 센서데이터와 서비스 도메인 지식의 융합을 위한 센서데이터의 시맨틱화는 필수적이다. 하지만 기존의 시맨틱 변환기술은 정적인 메타데이터를 시맨틱 데이터(RDF)로 변환하는 기술이며, 이는 사물인터넷 환경의 실시간성, 대용량성의 특징을 제대로 처리할 수 없는 실정이다. 따라서 본 논문에서는 사물인터넷 환경에서 발생하는 대용량 스트리밍 센서데이터의 실시간 병렬처리를 통해 시맨틱 데이터로 변환하는 기법을 제시한다. 본 기법에서는 시맨틱 변환을 위한 변환규칙을 정의하고, 정의된 변환규칙과 온톨로지 기반 센서 모델을 통해 실시간 병렬로 센서데이터를 시맨틱 변환하여 시맨틱 레파지토리에 저장한다. 성능향상을 위해 빅데이터 실시간 분석 프레임워크인 아파치 스톰을 이용하여, 각 변환작업을 병렬로 처리한다. 이를 위한 시스템을 구현하고, 대용량 스트리밍 센서데이터인 기상청 AWS 관측데이터를 이용하여 제시된 기법에 대한 성능평가를 진행하여, 본 논문에서 제시된 기법을 입증한다.

Big Data Analysis of the Women Who Score Goal Sports Entertainment Program: Focusing on Text Mining and Semantic Network Analysis.

  • Hyun-Myung, Kim;Kyung-Won, Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권1호
    • /
    • pp.222-230
    • /
    • 2023
  • The purpose of this study is to provide basic data on sports entertainment programs by collecting data on unstructured data generated by Naver and Google for SBS entertainment program 'Women Who Score Goal', which began regular broadcast in June 2021, and analyzing public perceptions through data mining, semantic matrix, and CONCOR analysis. Data collection was conducted using Textom, and 27,911 cases of data accumulated for 16 months from June 16, 2021 to October 15, 2022. For the collected data, 80 key keywords related to 'Kick a Goal' were derived through simple frequency and TF-IDF analysis through data mining. Semantic network analysis was conducted to analyze the relationship between the top 80 keywords analyzed through this process. The centrality was derived through the UCINET 6.0 program using NetDraw of UCINET 6.0, understanding the characteristics of the network, and visualizing the connection relationship between keywords to express it clearly. CONCOR analysis was conducted to derive a cluster of words with similar characteristics based on the semantic network. As a result of the analysis, it was analyzed as a 'program' cluster related to the broadcast content of 'Kick a Goal' and a 'Soccer' cluster, a sports event of 'Kick a Goal'. In addition to the scenes about the game of the cast, it was analyzed as an 'Everyday Life' cluster about training and daily life, and a cluster about 'Broadcast Manipulation' that disappointed viewers with manipulation of the game content.

Linked Data를 위한 한국어 자연언어처리 플랫폼 (Korean Natural Language Processing Platform for Linked Data)

  • 함영균;임경태;;박정열;윤용운;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.16-20
    • /
    • 2012
  • 본 논문에서는 한국어 자연언어처리를 위해 형태소분석기와 구구조 구문분석기와 의존구조 구문분석기를 통합한 하나의 플랫폼을 제공하고, 외국의 다양한 자연언어처리 도구들의 결과물과의 국제적 상호운용성 및 Linked Data를 위한 RDF 형태로의 변환 시스템을 제시한다.

  • PDF

Discovering and Maintaining Semantic Mappings between XML Schemas and Ontologies

  • An, Yuan;Borgida, Alex;Mylopoulos, John
    • Journal of Computing Science and Engineering
    • /
    • 제2권1호
    • /
    • pp.44-73
    • /
    • 2008
  • There is general agreement that the problem of data semantics has to be addressed for XML data to become machine-processable. This problem can be tackled by defining a semantic mapping between an XML schema and an ontology. Unfortunately, creating such mappings is a tedious, time-consuming, and error-prone task. To alleviate this problem, we present a solution that heuristically discovers semantic mappings between XML schemas and ontologies. The solution takes as input an initial set of simple correspondences between element attributes in an XML schema and class attributes in an ontology, and then generates a set of mapping formulas. Once such a mapping is created, it is important and necessary to maintain the consistency of the mapping when the associated XML schema and ontology evolve. In this paper, we first offer a mapping formalism to represent semantic mappings. Second, we present our heuristic mapping discovery algorithm. Third, we show through an empirical study that considerable effort can be saved when discovering complex mappings by using our prototype tool. Finally, we propose a mapping maintenance plan dealing with schema evolution. Our study provides a set of effective solutions for building sustainable semantic integration systems for XML data.

쇼핑몰 데이터베이스 설계를 위한 의미객체 모델링 (Semantic Object Modeling for Shopping Mall Database Design)

  • 전태보;김기동;오준형
    • 산업기술연구
    • /
    • 제25권A호
    • /
    • pp.123-131
    • /
    • 2005
  • Semantic object model has widely been recognized as an alternative data modeling approach to entity-relationship model for database system design. In this study, we have presented a semantic object model for intermediary type shopping mall consisting of multiple buyers and sellers. Essential processes and information with regard to the customer management, product management, price estimation, product order etc. have been considered for this study. Upon careful examination and analysis of them, a detailed semantic objects and attributes have been drawn and structured into semantic object diagrams. The final objects were converted into an entity-relationship diagram so that intuitive comparison could be made for relational database design. The results in this study may form a conceptual framework for both academic concerns and more complicated system applications.

  • PDF

시맨틱 웹 데이터에서 접미사 배열 기반의 경로 질의 처리 기법 (Suffix Array Based Path Query Processing Scheme for Semantic Web Data)

  • 김성완
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권10호
    • /
    • pp.107-116
    • /
    • 2012
  • 서로 연결된 데이터들의 의미를 컴퓨터가 이해하여 자동으로 처리할 수 있는 시맨틱 기술의 보급이 확산되고 있다. 시맨틱 웹에서 데이터에 대한 처리는 데이터 자체에 대한 접근뿐만 아니라 데이터 상호간의 연관성 즉, 데이터 상호간의 의미에 대한 이해와 접근을 중요시 하고 있다. 시맨틱 웹의 데이터와 그 연관성을 표현하기 위해 W3C에서는 RDF를 표준 형식으로 제정하였으며 RDF로 표현된 데이터에 대한 질의 처리를 지원하기 위해 여러 RDF 질의어가 제안되었으나 시맨틱 연관성을 고려한 질의어 정의와 이에 관련한 질의 처리 기법은 계속적인 연구가 필요한 분야이다. 본 논문에서는 RDF 질의 처리를 위해 소개된 접미사 배열 기반의 인덱싱 기법을 기반으로 시맨틱 연관성의 대표적 유형인 ${\rho}$-path 질의를 처리하기 위한 방법을 제안한다. 제안된 질의 처리 방법의 성능 평가를 위해 다른 두 가지 형태의 처리 방법을 구현하여 실험적으로 비교하였다. 평균 질의 처리 시간 측정을 통해 제안 기법이 다른 두 가지 처리 방법에 비해 각각 약 1.8~2.5배와 3.8~11배의 우수한 처리 성능을 보인다.