Morphologically annotated corpora are the basis for many tasks of computational linguistics. Most current approaches use statistically driven methods of morphological analysis, that provide just POS-tags. While this is sufficient for some applications, a rule-based full morphological analysis also yielding lemmatization and segmentation is needed for many others. This work thus aims at 〔1〕 introducing a rule-based Korean morphological analyzer called Kormoran based on the principle of linearity that prohibits any combination of left-to-right or right-to-left analysis or backtracking and then at 〔2〕 showing how it on be used as a POS-tagger by adopting an ordinary technique of preprocessing and also by filtering out irrelevant morpho-syntactic information in analyzed feature structures. It is shown that, besides providing a basis for subsequent syntactic or semantic processing, full morphological analyzers like Kormoran have the greater power of resolving ambiguities than simple POS-taggers. The focus of our present analysis is on Korean text.
With the wide spread of Social Network Services (SNS), fake news-which is a way of disguising false information as legitimate media-has become a big social issue. This paper proposes a deep learning architecture for detecting fake news that is written in Korean. Previous works proposed appropriate fake news detection models for English, but Korean has two issues that cannot apply existing models: Korean can be expressed in shorter sentences than English even with the same meaning; therefore, it is difficult to operate a deep neural network because of the feature scarcity for deep learning. Difficulty in semantic analysis due to morpheme ambiguity. We worked to resolve these issues by implementing a system using various convolutional neural network-based deep learning architectures and "Fasttext" which is a word-embedding model learned by syllable unit. After training and testing its implementation, we could achieve meaningful accuracy for classification of the body and context discrepancies, but the accuracy was low for classification of the headline and body discrepancies.
본 논문에서는 맥락에 따라 개체명의 범주가 달라지는 어휘를 중심으로 교차 태깅된 개체명의 성능을 레이블과 스팬 정답률, 문장 성분과 문장 위치에 따른 정답률로 나누어 살펴 보았다. 레이블의 정확도는 KoGPT2, mBERT, KLUE-RoBERTa 순으로 정답률이 높아지는 양상을 보였다. 스팬 정답률에서는 mBERT가 KLUE-RoBERTa보다 근소하게 성능이 높았고 KoGPT2는 매우 낮은 정확도를 보였다. 다만, KoGPT2는 개체명이 문장의 끝에 위치할 때는 다른 모델과 비슷한 정도로 성능이 개선되는 결과를 보였다. 문장 종결 위치에서 인식기의 성능이 좋은 것은 실험에 사용된 말뭉치의 문장 성분이 서술어일 때 명사의 중첩이 적고 구문이 패턴화되어 있다는 특징과 KoGPT2가 decoder기반의 모델이기 때문으로 여겨지나 이에 대해서는 후속 연구가 필요하다.
This paper explores the application of matrix factorization, specifically CUR decomposition, in the clustering of Korean language documents by topic. It addresses the unique challenges of Natural Language Processing (NLP) in dealing with the Korean language's distinctive features, such as agglutinative words and morphological ambiguity. The study compares the effectiveness of Latent Semantic Analysis (LSA) using CUR decomposition with the classical Singular Value Decomposition (SVD) method in the context of Korean text. Experiments are conducted using Korean Wikipedia documents and newspaper data, providing insight into the accuracy and efficiency of these techniques. The findings demonstrate the potential of CUR decomposition to improve the accuracy of document clustering in Korean, offering a valuable approach to text mining and information retrieval in agglutinative languages.
데이터 모델링 능력이 한정되고 뷰 갱신 모호성 문제에 기인하여, 관계형 뷰는 공학 응용에 제한적으로 사용되어 왔다. 반면에 객체지향 데이터베이스의 뷰는 관계형 뷰의 이 두 가지 단점을 극복하기 때문에, 공학 응용을 위한 맞춤 인터페이스를 정의하는데 중요한 역할을 할 것이다. 특히 공학 응용을 위한 데이터베이스 인터페이스는 갱신을 충분히 지원하여 한다. 좀더 자세히 말하면, 인터페이스에 대한 갱신이 모호성이 없이 정의되어야 하며 이 정의는 베이스 스키마에 대한 갱신 행동과 일치하여야 한다. 이를 위하여 객체지향 뷰가 베이스 데이터 모델과 같은 갱신 행동을 보이기 위한 제반 조건 - 갱신 의미 보존(update semantic preserving)-을 정의하였다. 그리고 이 갱신 의미 보존 특성의 실현 가능성을 보이기 위하여 CAD에 특화된 객체지향 뷰 시스템, 멀티 뷰(MultiView), 을 선정하여 그 시스템의 뷰 모델에 대한 갱신 의미 보존 갱신 행동을 정의하고 구체적인 구현 알고리즘을 제시하였다. 이 연구는 객체지향 데이터베이스에서 가장 클래스를 모았을 때 단순한 클래스의 모임이 아니라 isa계층을 갖는 '스키마'가 될 수 있게하기 위해서는 가상 클래스에 대한 갱신 의미가 클래스간 isa 관계를 위반해서는 안된다는 것을 발견하였다. 그리고 이의 충분조건으로 '뷰 스키마가 베이스 스키마처럼 보이도록'하는 가상 클래스의 갱신 의미와 가상 클래스간 스키마 형성 가능 조건을 발견하였다. 이는 객체 지향 데이터베이스에서 뷰를 클래스 수준에서 스키마 수준으로 정의하는 충분조건을 발견하고 구현한 최초의 논문이다.
어노테이션(annotation)은 문서에서 개인의 의견, 정리, 요약 등을 표현하기 위한 주석을 의미한다. 따라서 전자문서에서도 어노테이션은 중요하게 사용되며 특히 전자 잉크(digital inking)릉 이용한 이동 단말기 환경에서 효과적으로 사용된다. 그러나 기존 연구에서는 휴대용 단말기 환경의 단점인 적은 디스플레이 공간을 전혀 고려하지 않기 때문에 어노테이션 작성 및 활용이 매우 불편하다. 따라서 본 논문에서는 전자펜과 이동식 단말기 환경을 고려한 어노테이션 모델 및 시스템을 제안한다. 제안 어노테이션 모델은 다양한 컨텍스트(context)를 고려하고 이에 기반한 어노테이션 마크업 언어를 정의한다. 본 모델은 다양한 어노테이션 타입 및 의미(semantic) 모델, 펜 기반 어노테이션의 자동 인식 및 영역 보정 기능 등을 고려하며, 이것을 기반으로 CAML(Context-based Annotation Markup Language)를 정의한다. 또한 본 모델을 이용하여 XML 기반의 전자책문서 및 단말기 환경을 고려한 어노테이션 시스템을 구현하고 그 활용 가능성에 대하여 살펴본다. 본 연구의 결과는 eLearning, Cyber-Class, IETM(Interactive Electronic Technical Manuals) 에서 적절히 응용 가능하다.
단문분할은 한 문장에 용언이 복수개 있을 때 용언을 중심으로 문장을 나누는 방법이다. 기존의 방법은 정형화된 문장의 경우 비교적 효율적인 결과를 얻을 수 있으나, 구문적으로 복잡한 문장인 경우는 한계를 보였다. 본 논문에서는 이러한 한계를 극복하기 위해서 구문 정보만이 아니라, 의미 정보를 활용하여 단문을 분할하는 방법을 제안한다. 정형화된 문장의 경우와 달리 일상적인 문장은 무장 구조의 모호성이나 조사의 생략 등이 빈번하므로 의미 수준에서의 단문분할이 필요하다. 의미 영역에서 단문분할을 하면 기존의 구문 의존적인 방법들에서 발생하는 모호성을 상당수 해소할 수 있게 된다. 논문에서는 먼저 하위범주와 사전과 시소러스의 의미 정보를 이용하여 용언과 보어성분 간의 의존구조를 우선적으로 파악하고, 구문적인 정보와 기타 문법적인 지식을 사용하여 기타 성분을 의존구조에 점진적으로 포함시켜가는 이단계 단문분할 알고리즘을 제안한다. 제안된 이단계 단문분할 방법의 유용성을 보이기 위해 ETRI-KONAN의 말뭉치 중 25,000문장을 수작업으로 술어와 보어성분 간의 의존구조를 태깅한 후 본 논문에서 제안한 방법과 비교하는 실험을 수행하였으며, 이때 단문분할의 결과는 91.8%의 정확성을 보였다.
대언 믿음과 대물 믿음의 구별을 소개하고, 믿음 문맥과 양상 문맥에서 대언(de dicto)/대물(de re) 애매성이 동일하게 나타나는데, 양상 구문의 경우 한국어는 영어와 차별화되는 특징을 갖지 않는다는 것을 지적한다. 부정문에서도 대언/대물 구문의 애매성이 나타나는 바, 이와 관련하여 한국어는 대물 부정문에 해당하는 통사 구조를 허용한다. 대물 구문은 지시적으로 투명한 구문이요 따라서 동일자 대입률을 허용하는 구문이며, 대언 구문은 지시적으로 불투명한 구문이요 동일자 대입률을 허용하지 않는 구문이다. 그런데, 인용 동사, 언어행위동사, 인지태도 동사들과 함께 사용되는 한국어의 인용 어미 '라고'는 특이하게도 영어와 평행하게 대언/대물 애매성을 갖는 문장 뿐 아니라 애매성 없는 대물 구문을 구성하는 문장도 제공한다. 또한, '라고' 구문은 내포절의 내용에 대한 화자의 공약에 있어서도 중립적이다. 한국어에서는 내포절의 내용에 대한 화자의 긍정적인 공약을 표시하고자 하는 경우 '음/임' 또는 '라는 것'이라는 어미를 사용한다. 이런 점 때문에 '앎이 진리를 전제한다'는 서구 인식론의 원칙은 인식 문장을 한국어 어미 '라고'를 사용하는 문장으로 표현하려고 할 때에는 어려움을 겪게 된다.
이미지를 각각의 카테고리로 분류하는 일은 컴퓨터 비전 분야의 중요한 문제 중 하나이다. 그러나 이미지에 존재하는 가변성, 모호성, 스케일 문제 등으로 인해 매우 도전적인 문제라고 할 수 있다. 본 논문에서는 장면 이미지를 구성하는 시멘틱 속성들의 고차원의 상호작용 관계를 고려 가능한 하이퍼그래프 기반의 모델링 기법을 제시하고 이를 장면 이미지 분류에 적용한다. 각 장면 카테고리에 준최적화된 하이퍼그래프를 생성하기 위해 확률 부분공간 기법에 기반을 둔 탐색기법을 제안하고, 이들 부분 공간 내에 속한 시멘틱 속성들의 발현량을 축약하기 위한 우도비 기반의 선형 변환 기법을 제안한다. 제안한 기법의 우수성을 검증하기 위한 실험을 통하여 제시한 기법을 통해 생성된 특징 벡터의 분별력이 기존의 기법들에서 사용된 특징 벡터들의 분별력보다 우수함을 보인다. 또한 제안한 기법을 장면 분류 데이터에 적용한 결과 기존의 기법들과 비교하여 경쟁력 있는 분류 성능을 보인다. 제안 한 기법은 이미지 분류에서 일반적으로 사용 되는 기법인 BoW+SPM 모델과 비교하여 3~4%이상의 성능 향상을 보였다.
본 논문은 웹 검색 시스템의 사용자 질의에 대한 키워드 색인 기반의 검색 과정에서 적합 문서를 선별하기 위해 검색 키워드의 의미정보와 사용자의 누적 사용정보를 사용하여 검색 성능을 향상시키는 방법을 소개한다. 검색 키워드 의미 정보를 이용하는 검색 방법은 검색 결과로서 의미적으로 무관한 많은 문서들을 배제할 수 있고, 사용자의 누적된 사용정보는 관심사에 중심을 둔 검색문서들을 상위에 제시할 수 있다. 검색 키워드의 의미정보 지식베이스를 구축하고, 검색 문서들을 색인어와 해당 의미범주로 분류하며, 사용자의 정답 문서 참조 행위에 대한 누적 정보를 순위 결정에 반영하여 검색 성능을 향상시킬 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.