• Title/Summary/Keyword: Self-tuning system

Search Result 251, Processing Time 0.028 seconds

Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller

  • Ahn Kyoung-Kwan;Nguyen Bao Kha
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.756-762
    • /
    • 2006
  • Shape Memory Alloy(SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.

The development of an on-line self-tuning fuzzy PID controller (온라인 자기동조 퍼지 PID 제어기 개발)

  • 임형순;한진욱;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.704-707
    • /
    • 1997
  • In this paper, we present a fuzzy logic based tuner for continuous on-line tuning of PID controllers. The essential idea of the scheme is to parameterize a Ziegler-Nichols-like tuning formula by a singler parameter .alpha., then to use an on line fuzzy logic to self-tune the parameter. The adaptive scaling makes the controller robust against large variations in parametric and dynamics uncertainties in the plant model. New self-tuning controller has the ability to decide when to use PI or PID control by extracting process dynamics from relay experiments. These scheme lead to improved performance of the transient and steady state behavior of the closed loop system, including processes with nonminimum phase processes.

  • PDF

A Design of Power System Stabilization for SVC System Using Self Tuning Fuzzy Controller (자기조정 퍼지제어기를 이용한 SVC계통의 안정화 장치의 설계)

  • Joo, Seok-Min;Hur, Dong-Ryol;Kim, Hai-Jai
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • This paper presents a control approach for designing a self tuning fuzzy controller for a synchronous generator excitation and SVC system. A combination of thyristor-controlled reactors and fixed capacitors (TCR-FC) type SVC is recognized as having the most flexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage. The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly. Using input-output data pair obtained from PSS, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed steepest decent method. The related simulation results show that the proposed fuzzy controller is more powerful than the conventional ones.

Implementation of Self-Tuning Fuzzy Control System for Robust Speed Control of an Induction Motor (유도 전동기의 견실한 속도 제어를 위한 자기 조정 퍼지 제어 시스템의 구현)

  • 송호신;이오결;이준탁;우정인
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.346-349
    • /
    • 1994
  • In this paper, we implemented the variable spped controller of an induction motor using the self-tuning fuzzy control algorithms, which recently is invoking the remarkable interest. Also we preposed a self-tuning technique of scale factors which could easily design the fuzzy speed controller. Comparing with conventional PI speed controller, the performances of proposed fuzzy controller such as dynamic responses and its the robustness against load disturbance were substantially improved.

A multivariable decoupling self-tuning controller for systems with time delays (시간 지연을 갖는 다변수 계통에 대한 비결합 자기동조 제어기)

  • 김유택;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.190-192
    • /
    • 1987
  • In the paper an multivariable decoupling self-tuning algorithm is proposed for controller design, by specifying the closed-loop behaviour of the system in the form of a reference model, so that the controller parameters can be estimated on-line as the process development. The effectiveness of this algorithm in controlling multivariable systems is demonstrated by simulation example in spite of the usual implementation problems of self-tuning controllers.

  • PDF

Indirect self-tuning regulator with loopshaping

  • Han, Seong-Ho;Yoshihiro, Takita
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.47.6-47
    • /
    • 2001
  • In this paper a new indirect robust self-tuning regulator is proposed including an inverse system of a plant and a robust compensator such that it achieves the desired frequency shape specified by solving the mixed H$\infty$ sensitivity problem within a prescribed tolerance in the H$\infty$ norm. Consequently, in the proposed self-tuning regulator, robust stability is guaranteed in spite of the identification error.

  • PDF

MPPT Control of Photovoltaic System using Neural Network PI Self Tuning (신경회로망 PI자기동조를 이용한 PV발전시스템의 MPPT제어)

  • Lee, J.H.;Kim, E.G.;Kim, D.G.;Lee, S.C.;Oh, B.H.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.155-157
    • /
    • 2005
  • This paper shows how to design a MPPT control of PV system using neural network PI self tuning. The conventional self-tuning methods have the voltage control problem of nonlinear PV system which can't adapt against any kinds of noise or operation circumstances. In this paper, supposed to solve these problem to PI parameters controller algorithm using ANN. In the proposed algorithm, the parameters of the controller were adjusted to reduce by on-line system the error of the output voltage of DC-DC chopper. In this process, EBPA NN was constituted to an output error value of a DC-DC chopper and conspired an input and output. The performance of the self-tuning controller is compared with that of the PI controller tuned by conventional method. The effectiveness of the proposed control method is verified thought the Matlab Simulink.

  • PDF

A Self -Tuning PID Controller for a System with Varying Time Delays (지연시간이 변하는 시스템을 고려한 자기동조 PID 제어기)

  • Lee, Chang-Goo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.7
    • /
    • pp.475-483
    • /
    • 1988
  • One of the advantages of the well-known PID controller is that it is a sufficiently flexible controller for many applications. But, when the plant parameters and disturbances are unknown or change with time, it is desirable to make automatic tuning of PID controller in order to achieve an acceptable level of performance of the control system. This paper presents a reformulation of the self-tuning pole-zero placement controller subject to some conditions and restrictions. It has the structure of a digital PID controller and is based on Vogel and Edgar's pole-zero placement design method. Various properties of this self-tuning PID controller are described and illustrated by simulation examples.

  • PDF

A Systematic Approach for Designing a Self-Tuning Power System Stabilizer Based on Artificial Neural Network

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.281-286
    • /
    • 2005
  • The main objective of the research work presented in this article is to present a systematic approach for designing a multilayer feed-forward artificial neural network based self-tuning power system stabilizer (ST-ANNPSS). In order to suggest an approach for selecting the number of neurons in the hidden layer, the dynamic performance of the system with ST-ANNPSS is studied and hence compared with that of conventional PSS. Finally the effect of variation of loading condition and equivalent reactance, Xe is investigated on dynamic performance of the system with ST-ANNPSS. Investigations reveal that ANN with one hidden layer comprising nine neurons is adequate and sufficient for ST-ANNPSS. Studies show that the dynamic performance of STANNPSS is quite superior to that of conventional PSS for the loading condition different from the nominal. Also it is revealed that the performance of ST-ANNPSS is quite robust to a wide variation in loading condition.

  • PDF

A Study on the Direct Pole Placement PID Self-Tuning Controller design for DC Servo Motor Control (직류 서어보 전동기 제어를 위한 직접 극배치 PID 자기동조 제어기의 설계)

  • Rhee, Kyu-Young;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.327-331
    • /
    • 1989
  • This paper concerned about a study on the direct pole placement PID self-tuning controller design for Robot manipulator control system. The method of a direct pole placement self-tuning PID control for a DC motor of robot manipulator tracks a reference velocity in spite of the parameters uncertainties in nonminimum phase system. In this scheme, the parameters of controller are estimated by the recursive least square(RLS) identification algorithm, the pole placement method and diophantine equation. A series of simulation in which minimum phase system and nonminimum phase system are subjected to a pattern of system parameter changes is presented to show some of the features of the proposed control algorithm. The proposed control algorithm which shown are effective for the practical application, and experiments of DC motor speed control for Robot manipulator by a microcomputer IRH-PC/AT are performed and the results are well suited.

  • PDF