• Title/Summary/Keyword: Self-tuning

Search Result 434, Processing Time 0.026 seconds

Design of a Neural Network Based Self-Tuning Fuzzy PID Controller (신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Im, Jeong-Heum;Lee, Chang-Goo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.22-30
    • /
    • 2001
  • This paper describes a neural network based fuzzy PID control scheme. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriated PID gains in nonlinear systems and systems with long time delay and so on. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based self tuning fuzzy PID controller of which output gains were adjusted automatically. The tuning parameters of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods. Then they were adjusted by using proposed neural network learning algorithm. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The experiment on the magnetic levitation system, which is known to be heavily nonlinear, showed the proposed controller's excellent performance.

  • PDF

A Fuzzy Self-Tuning PID Controller with a Derivative Filter for Power Control in Induction Heating Systems

  • Chakrabarti, Arijit;Chakraborty, Avijit;Sadhu, Pradip Kumar
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1577-1586
    • /
    • 2017
  • The Proportional-Integral-Derivative (PID) controller is still the most widespread control strategy in the industry. PID controllers have gained popularity due to their simplicity, better control performance and excellent robustness to uncertainties. This paper presents the optimal tuning of a PID controller for domestic induction heating systems with a series resonant inverter for controlling the induction heating power. The objective is to design a stable and superior control system by tuning the PID controller with a derivative filter (PIDF) through Fuzzy logic. The paper also compares the performance of the Fuzzy PIDF controller with that of a Ziegler-Nichols PID controller and a fine-tuned PID controller with a derivative filter. The system modeling and controllers are simulated in MATLAB/SIMULINK. The results obtained show the effectiveness and superiority of the proposed Fuzzy PID controller with a derivative filter.

Load variation Compensated Neural Network Speed Controller for Induction Motor Drives (부하변동을 보상한 유도전동기 신경망 속도 제어기)

  • Oh, Won-Seok;Cho, Kyu-Min;Kim, Hee-Jun;Hyun, Sin-Tae;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1137-1139
    • /
    • 2002
  • In this paper, recurrent artificial neural network (RNN) based self tuning speed controller is proposed for the high performance drives of induction motor. RNN provides a nonlinear modeling of motor drive system and could give the information of the load variation, system noise and parameter variation of induction motor to the controller through the on-line estimated weights of corresponding RNN. Thus, proposed self tuning controller can change gains of the controller according to system conditions. The gain is composed with the weights of RNN. For the on-line estimation of the weights of RNN, extended kalman filter (EKF) algorithm is used. Self tuning controller that is adequate for the speed control of induction motor is designed. The availability of the proposed controller is verified through the MATLAB simulation with the comparison of conventional PI controller.

  • PDF

On-line self-tuning PID power controller using fuzzy logic for CDMA cellular systems (퍼지 논리를 이용한 온라인 자기동조기능을 갖는 CDMA 셀룰러 시스템용 PID 전력제어기)

  • 김상민;한진욱;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.211-214
    • /
    • 1997
  • This paper applies fuzzy self-tuning PID controller in DS/CDMA cellular system. Power control is essential in DS/CDMA to compensate for the differing received powers due to both the slowly varying long-term and fast varying short-term fading processes and co-channel interference. The controller proposed is adaptable for the variations of the system dynamics and especially for the variable time delay which exists in mobile radio systems. Accordingly the results is the smaller power control error, that is, the smaller average transmitting power of mobile compared with the conventional control schemes. Because interferences to the other mobiles are reduced, the capacity of CDMA can be increased.

  • PDF

End-point position control of a flexible arm by PID self-tuning fuzzy controller

  • Yang, G.T.;Ahn, S.D.;Lee, S.C.;Chonan, S.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.496-500
    • /
    • 1993
  • This paper presents an end-point position control of 1-link flexible robot arm by the PID self-tuning fuzzy algorithm. The governing equation is derived by the extended Hamilton's principle and based on the Bernoullie-Euler beam theory. The governing equation is solved by applying the Laplace transform and the numerical inversion method. The arm is mounted on the translational mechanism driven by a ballscrew whose rotation is controlled by dcservomotor. Tip position is controlled by the PID self-tuning fuzzy algorithm so that it follows a desired position. This paper shows the experimental and theoretical results of tip dispalcement, and also shows the good effects reducing the residual vibration of the end-point.

  • PDF

Implementation of Self-Tuning Fuzzy Control System for Speed Control of an Induction Motor

  • Shin, Song-Ho;Jin, Shim-Young;Lee, Oh-Keol;Lee, Joon-Tark
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.449-452
    • /
    • 1998
  • In this paper, we implemented the variable fuzzy speed controller of an IM(induction motor) using the fuzzy control algorithms. Specially, we proposed a self-tuning technique of scale factors which could make easily the fuzzy speed controller optimize. Comparing with the conventional PI speed controller, the dynamic performances of a proposed fuzzy controller such as the reaching time, the maximum overshoot and the robustness against load disturbance were substantially improved.

  • PDF

Self-Tuning Fuzzy Logic Controller for a Dual Star Induction Machine

  • Merabet, Elkheir;Amimeur, Hocine;Hamoudi, Farid;Abdessemed, Rachid
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.133-138
    • /
    • 2011
  • This paper proposes a simple but robust self-tuning fuzzy logic controller for the speed regulation of a dual star induction machine based on indirect field oriented control. For feed the two star of this machine, two voltage source inverters based on sinus-triangular pulse-width modulation techniques are introduced. The simulation results show the robustness and good performance of the proposed controller.

A self tuning PID controller with minimum variance (최소분산 자기동조 PID제어기)

  • Jo, Won-Cheol;Jeon, Gi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.14-20
    • /
    • 1996
  • This paper presents a self tuning method of a velocity type PID controller for minimum or non-minimum phase systems with time delays. The velocity type PID control structure is determined in the process of minimizing the variance of the auxilliary output, and self tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optimizing a design parameter. This method is simple and effective compared with other existing methods[1,2]. Numerical examples are included to illustrate the procedure and to show the performance of the control system.

  • PDF

Design of Learning Fuzzy Controller by the Self-Tuning Algorithm for Equipment Systems (설비시스템을 위한 자기동조기법에 의한 학습 FUZZY 제어기 설계)

  • Lee, Seung
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.71-77
    • /
    • 1995
  • This paper deals with design method of learning fuzzy controller for control of an unknown nonlinear plant using the self-tuning algorithm of fuzzy inference rules. In this method the fuzzy identification model obtained that the joined identification model of nonlinear part and linear identification model of linear part by fuzzy inference systems. This fuzzy identification model ordered self-tuning by Decent method so as to be servile to nonlinear plant. A the end, designed learning fuzzy controller of fuzzy identification model have learning structure to model reference adaptive system. The simulation results show that th suggested identification and learning control schemes are practically feasible and effective.

  • PDF

Sensorless Self-Tuning Adaptive Control of Nonlinear Modeled DC Motors Using DSP (DSP를 이용한 비선형 모델을 갖는 직류 전동기의 센서없는 자기동조 적응제어)

  • 김윤호;국윤상;유연식
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.49-56
    • /
    • 1995
  • In this study, self-tuning adaptive control using state observer is developed. Self-tuning adaptive controller that estimates the parameters of the system in real time and generates the optimal control signals has robust characteristic about varying load and external disturbances. In addition, state observer without sensors is applied, thus the control can be performed more quickly and exactly. Since chopper is used commonly in practical drives, the characteristics of the chopper are included in state observer algorithm, which, in turn, makes the system exact estimation. Since series type DC motor has nonlinear models, linearizing approach are investigated. to realize the proposed algorithm it requires fast calculation in real time. TMS320C31, digital signal processor, is applied to realized the adaptive control algorithms.

  • PDF