• Title/Summary/Keyword: Self-radiation impedance

Search Result 12, Processing Time 0.024 seconds

Calculation of Self-radiation Impedance for a Rectangular Transducer (장방형 트랜스듀서의 자기방사 임피던스 계산)

  • 이기욱;김무준;하강열;김천덕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.7
    • /
    • pp.85-89
    • /
    • 2000
  • In this paper, by extending the previously developed self- and mutual-radiation impedance calculation method for a regular-square vibrating surface by using numerical series, we proposed a method to obtain the self-radiation impedance of a rectangular transducer with an arbitrary integer ratio of the length to width. The proposed method exhibits high accuracy and a short computation time. After investigating the accuracy and computation time as the number of elements changes, we have calculated the self-radiation impedance of several rectangular transducers, and compared the results with those in the literature.

  • PDF

An Investigation of Self-Radiation Impedance of a Square Piston using an Integral Equation in the Rigid Infinite Baffle (적분식을 이용한 무한배플 사각형 진동체의 자기방사 임피던스 연구)

  • Lee, Jong-Kil;Seo, In-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.58-62
    • /
    • 1995
  • Integral equations of self-radiation impedance of a rectangular piston in a rigid infinite baffle are derived using by polar coordinate. The self-radiation impedance is separated by two parts ; self-radiation resistance and self-radiation reactance. Derived integral equations are simulated by numerical method. Based on the numerical results, self-radiation impedance can be obtained in the low and high frequency ranges without any limited conditions.

  • PDF

Calculation of Radiation Impedance for Piston Sources on a Spherical Baffle (구형 배플상의 피스톤 음원에 대한 방사임피던스 계산)

  • 박순종;김무준;김천덕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • The characteristics of radiation impedance for piston source on a spherical baffle are analyzed by algorithms which consists of Finite Element Method (FEM) and Hybrid type Infinite Element Method (HIEM). The results of self-radiation impedance for radiation angle and mutual radiation impedance between piston sources coincided with other reports on the spherical rigid baffle. For the spherical non-rigid baffles, the variations of self-radiation impedance and mutual-radiation impedance are identified. Therefore, these results can be applied to design and radiation characteristics analysis of acoustic transducers.

Measurement of the self-radiation impedance of an ultrasonic transducer with a square vibrating surface (정방형 방사면을 갖는 초음파 진동자의 자기방사임피던스 측정)

  • Kim, Jungsoon;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.108-114
    • /
    • 2017
  • We have experimentally analyzed the self-radiation impedance of an ultrasonic transducer with a square radiation surface that is used as a vibrator in underwater ultrasonic detection systems. The radiation reactance and the radiation resistance were measured in the range from 1 to 3 of ka that is the product of a wave number and a length of the edge of the square vibrator. By comparing the measured results with those of theoretical calculation of the radiation impedance using a series, we confirmed the validity of the experimental method and experimentally confirmed the variation trend in the radiation impedance of the square radiation surface.

Self-Radiation Impedance of rectangular Acoustic Sensor Without Baffle (배플이 없는 사각형 음향센서의 자기방사 임피던스)

  • Lee, Jong-Kil;Seo, In-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.82-88
    • /
    • 1995
  • Conductance and susceptance of the self-radiation impedance in a rectangular acoustic sensor without baffle are measured experimentally. Finite polyurethane window is mounted at the end of the acoustic sensor. The sensor radiation impedance is cauculated using the equivalent electric circuit. Using the Levine's integral equations of a rectangular piston mounted to the rigid infinite baffle, radiation resistance and reactance were simulated numerically. Numerical and experimental results are compared to each other.

  • PDF

A New Calculation Method for the Radiation Impedance of Transducer with Regular Square Vibrating Surface

  • Kim, Moo-Joon;Kim, Chun-Duck;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1E
    • /
    • pp.20-26
    • /
    • 1999
  • Although the radiation impedance of a transducer with a regular square surface has been studied by many researchers, the formulas are still very complicated, which results in long computation time and low accuracy. In this paper, we propose a new algorithm for the calculation of acoustic radiation impedance in which the regular square vibrating surface of a transducer is divided into small elements and duplicate calculations are eliminated in the process of calculating mutual effects of the elements. Using this algorithm, shorter computation time and higher accuracy of results can be obtained. As a demonstration, the self and the mutual radiation impedance of transducers with a regular square surface are calculated and the accuracy of the results is evaluated.

  • PDF

Radiation power estimation for the planar array acoustic sensor considering mutual coupling effects (상호간섭영향을 고려한 평면배열형 음향센서의 방사출력 예측)

  • Lee, Jong-Kil;Seo, In-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.194-199
    • /
    • 1996
  • 평면 배열형 소나 센서에서는 트랜스듀서 상호간의 간섭효과들이 음을 방사하는 각각의 트랜스듀서 및 평면 배열의 빔패턴에 영향을 주게된다. 따라서 음향 방사출력의 계산은 소나용 트랜스듀서의 성능및 효율을 평가하는데 필수적이다. 음향 방사출력을 예측하기 위하여 무한 강성 배플에 고정된 수개의 트랜스듀서를 이론해석의 대상으로 설정하였다. 각 트랜스듀서는 자기방사 임피던스 및 상호방사 임피던스로 구성되어 있으며 이것의 총 방사 임피던스 및 음향반사 출력의 추출은 등가 전기회로 모델을 이용하였다. 이론및 수치해석의 결과에 근거하여 음향방사 출력은 각 트랜스듀서 상호간의 간섭의 양에 의존함을 보였으며 상호간섭에 의한 음향출력 손실은 25.05%에서 최고 51.52%정도임을 확인하였다.

  • PDF

Calculation of Radiation Impedance for Rectangular Piston Vibrators with Finite Baffle (유한배플의 영향을 고려한 정방형 진동면의 방사임피던스계산)

  • 김무준;김천덕;하강열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.7
    • /
    • pp.3-6
    • /
    • 2000
  • Because the generally reported radiation impedance has been calculated for vibrating surface with infinite baffle, the results have difficulties to apply for design of the real transducers with finite baffle. In this paper, with assuming a vibrating surface as a set of small point sources, a new calculation method for the vibrating surface with finite baffle is suggested by considering the effect of finite baffle on the source strength of each point source. As an example, the variation of self-radiation impedance for rectangular vibrating surface is calculated according to the size of baffle. The results show that the suggested method is useful.

  • PDF

Optimal Beam Design of Underwater Acoustic Planar Array Transducer Considering Radiation Impedance (방사 임피던스를 고려한 평면 배열 수중 음향 트랜스듀서의 최적 빔 설계)

  • Joh, Chee-Young;Seo, Hee-Seon;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.40-45
    • /
    • 1996
  • In this paper, a nonlinear optimal design technique is presented to find an optimal beam pattern. With this technique, the beam width is minimized with respect to a given maximum allowable side-lobe level considering the self- and mutual radiation impedances of vibrators. The proposed method is applied to design a planar array consisting 37 vibrators which are symmetric in X, Y and $45^{circ}$ axes. The results show that significantly low side-lobe level maintaining a main beam width can be obtained using this method.

  • PDF

A CPW-Fed Self-Affine Cross Shape Fractal Antenna (자기 아파인 프랙탈 구조를 이용한 CPW 급전 크로스 안테나)

  • Kim Tae-Hwan;Lee Jae-Wook;Cho Choon-Sik;Lee Yun-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.949-956
    • /
    • 2005
  • In this paper, a new CPW-fed cross shape fractal antenna having a self-affinity is presented. This novel configuration, which has anisotropic scaling symmetry, makes smaller profile characteristic compared to the fractal antenna using a self-similarity. Increase of the iteration coefficient, which leads to decrease of the fundamental resonant frequency, shows a good impedance matching condition and multi-band characteristics due to new surface current paths. The radiation patterns are similar to those of monopole antennas. In the K3 stage of iteration, the proposed antenna shows a measured maximum gain 2.27 dBi at 940 MHz. A commercially available software based on the FDTD algorithm has been used to obtain the predicted results. In addition, an RT/Duroid 5880 substrate has been employed for the experimental results.