DOI QR코드

DOI QR Code

Measurement of the self-radiation impedance of an ultrasonic transducer with a square vibrating surface

정방형 방사면을 갖는 초음파 진동자의 자기방사임피던스 측정

  • Received : 2017.01.11
  • Accepted : 2017.03.29
  • Published : 2017.03.31

Abstract

We have experimentally analyzed the self-radiation impedance of an ultrasonic transducer with a square radiation surface that is used as a vibrator in underwater ultrasonic detection systems. The radiation reactance and the radiation resistance were measured in the range from 1 to 3 of ka that is the product of a wave number and a length of the edge of the square vibrator. By comparing the measured results with those of theoretical calculation of the radiation impedance using a series, we confirmed the validity of the experimental method and experimentally confirmed the variation trend in the radiation impedance of the square radiation surface.

수중 초음파 탐지 시스템에서 배열 진동소자로 사용되는 정방형의 방사면을 갖는 초음파 트랜스듀서의 자기 방사임피던스를 실험적으로 해석하였다. 7개의 진동수가 서로 다른 란주반형 진동자를 제작하여 파수와 진동자의 한변의 길이의 곱인 ka의 값이 1~3의 범위에 대해서 방사리액턴스 및 방사저항을 측정하였다. 이 결과를 수열을 이용한 방사임피던스의 이론계산 결과와 비교하여 본 연구에서 수행한 실험방법의 유효성을 확인 하였고 정방형의 방사면에 대한 방사임피던스의 변화경향을 실험적으로 확인할 수 있었다.

Keywords

References

  1. J. L. Butler, "Radiating head flexure and its effect on transducer performance," J. Acoust. Soc. Am. 70, 500-503 (1981). https://doi.org/10.1121/1.386794
  2. P. R. Stepanishen, "Transient radiation from pistons in an infinite planar baffle," J. Acoust. Soc. Am. 49, 1629-1638 (1971). https://doi.org/10.1121/1.1912541
  3. J. A. Jensen and N. B. Svendsen, "Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers," IEEE Trans. Ultrason. Ferroelect. Freq. Control, 39, 262-267 (1992). https://doi.org/10.1109/58.139123
  4. H. Kim and Y. Roh, "Analysis of the radiation pattern in relation to the head mass shape applicable to a Tonpilz transducer" (In Korean), J. Acoust. Soc. Kr. 29, 422-430 (2010).
  5. L. J. Ziomek, Fundamentals of Acoustic Field Theory and Space-Time Signal Processing (CRC Press, Boca Raton, 2000), pp. 401-579.
  6. F. P. Mechel, Formulas of Acoustics (Springer, San Diego, 1998), pp. 431-521.
  7. G. R. Lockwood, P. Li, M. O'Donnell, and F. S. Foster, "Optimizing the radiation pattern of sparse periodic linear arrays," IEEE Trans. Ultrason. Ferroelect. Freq. Control, 43, 7-14 (1996). https://doi.org/10.1109/58.484457
  8. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics 4th edition (John Wiley & Sons, New York, 2000), pp. 171-204.
  9. P. R. Stepanishen, "The time‐dependent force and radiation impedance on a piston in a rigid infinite planar baffle," J. Acoust. Soc. Am. 49, 841-849 (1971). https://doi.org/10.1121/1.1912424
  10. R. R. Smith, "Finite element analysis of acoustically radiating structures with applications to sonar transducers," J. Acoust. Soc. Am. 54, 1277-1288 (1973). https://doi.org/10.1121/1.1914425
  11. C. E. Wallace, "Radiation resistance of a baffled beam," J. Acoust. Soc. Am. 51, 936-945 (1972). https://doi.org/10.1121/1.1912942
  12. H. A. Schneck, "Improve integral fomulation for acoustic radiation problems," J. Acoust. Soc. Am. 44, 41-58 (1968). https://doi.org/10.1121/1.1911085
  13. G. Chertock, "Sound radiation from vibrating surfaces," J. Acoust. Soc. Am. 36, 1305-1313 (1964). https://doi.org/10.1121/1.1919203
  14. P. R. Stepanishen, "The time-dependent force and radiation impedance on a piston in a rigid infinite planar baffle," J. Acoust. Soc. Am. 49, 841-849 (1970).
  15. J. Lee and I. Seo, "Self-radiation impedance of rectangular acoustic sensor without baffle (in Korean)," J. Acoust. Soc. Kr. 14, 82-88 (1995).
  16. G. Bank and J. R. Wright, "Radiation impedance calculations for a rectangular piston," J. Audio Eng. Soc. 38, 350-354 (1990).
  17. D. S. Burnett and W. W. Soroka, "Tables of rectangular piston radiation impedance functions with application to sound transmission loss through deep apertures," J. Acoust. Soc. Am. 51, 1618-1623 (1972). https://doi.org/10.1121/1.1913008
  18. H. Levine, "On the radiation impedance of a rectangular piston," J. Sound Vib. 89, 447-455 (1983). https://doi.org/10.1016/0022-460X(83)90346-2
  19. P. R. Stepanishen, "The radiation impedance of a rectangular piston," J. Sound Vib. 55, 275-288 (1977). https://doi.org/10.1016/0022-460X(77)90599-5
  20. M. Kim, C. Kim, and K. Ha, "A new method of calculating radiation impedance for vibrating surface with finite baffle," Jpn. J. Appl. Phys. 40, 3815-3816 (2001). https://doi.org/10.1143/JJAP.40.3815
  21. M. Kim, C. Kim, and K. Ha, "A new calculation method of radiation impedance for vibrating surfaces with an arbitrary shape," Jpn. J. Appl. Phys. 39, 3174-3179 (2000). https://doi.org/10.1143/JJAP.39.3174
  22. J. Kim, M. Kim, K. Ha, H. Seo, and C. Joh. "Experimental study of radiation impedance with effect of reflected wave from sonar dome," Jpn. J. Appl. Phys. 49, 07HG07 (2010).
  23. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics 4th edition (John Wiley & Sons, New York, 2000), pp. 390-430.